264 research outputs found

    Contributions to Four-Position Theory with Relative Rotations

    Full text link
    We consider the geometry of four spatial displacements, arranged in cyclic order, such that the relative motion between neighbouring displacements is a pure rotation. We compute the locus of points whose homologous images lie on a circle, the locus of oriented planes whose homologous images are tangent to a cone of revolution, and the locus of oriented lines whose homologous images form a skew quadrilateral on a hyperboloid of revolution

    The Kinematic Image of 2R Dyads and Exact Synthesis of 5R Linkages

    Full text link
    We characterise the kinematic image of the constraint variety of a 2R dyad as a regular ruled quadric in a 3-space that contains a "null quadrilateral". Three prescribed poses determine, in general, two such quadrics. This allows us to modify a recent algorithm for the synthesis of 6R linkages in such a way that two consecutive revolute axes coincide, thus producing a 5R linkage. Using the classical geometry of twisted cubics on a quadric, we explain some of the peculiar properties of the the resulting synthesis procedure for 5R linkages.Comment: Accepted for publication in the proceedings of the IMA Conference on Mathematics of Robotics, Oxford, 201

    Optimal path planning for nonholonomic robotics systems via parametric optimisation

    Get PDF
    Abstract. Motivated by the path planning problem for robotic systems this paper considers nonholonomic path planning on the Euclidean group of motions SE(n) which describes a rigid bodies path in n-dimensional Euclidean space. The problem is formulated as a constrained optimal kinematic control problem where the cost function to be minimised is a quadratic function of translational and angular velocity inputs. An application of the Maximum Principle of optimal control leads to a set of Hamiltonian vector field that define the necessary conditions for optimality and consequently the optimal velocity history of the trajectory. It is illustrated that the systems are always integrable when n = 2 and in some cases when n = 3. However, if they are not integrable in the most general form of the cost function they can be rendered integrable by considering special cases. This implies that it is possible to reduce the kinematic system to a class of curves defined analytically. If the optimal motions can be expressed analytically in closed form then the path planning problem is reduced to one of parameter optimisation where the parameters are optimised to match prescribed boundary conditions.This reduction procedure is illustrated for a simple wheeled robot with a sliding constraint and a conventional slender underwater vehicle whose velocity in the lateral directions are constrained due to viscous damping
    • 

    corecore