27,563 research outputs found

    Accurate Feature Extraction and Control Point Correction for Camera Calibration with a Mono-Plane Target

    Get PDF
    The paper addresses two problems related to 3D camera calibration using a single mono-plane calibration target with circular control marks. The first problem is how to compute accurately the locations of the features (ellipses) in images of the target. Since the structure of the control marks is known beforehand, we propose to use a shape-specific searching technique to find the optimal locations of the features. Our experiments have shown this technique generates more accurate feature locations than the state-of-the-art ellipse extraction methods. The second problem is how to refine the control mark locations with unknown manufacturing errors. We demonstrate in a case study, where the control marks are laser printed on a A4 paper, that the manufacturing errors of the control marks can be compensated to a good extent so that the remaining calibration errors are reduced significantly. 1

    An effective strategy of real-time vision-based control for a Stewart platform

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksA Stewart platform is a kind of parallel robot which can be used for a wide variety of technological and industrial applications. In this paper, a Stewart platform designed and assembled at the Universitat Polit`ecnica de Catalunya (UPC) by our research group is presented. The main objective is to overcome the enormous difficulties that arise when a real-time vision-based control of a fast moving object placed on these mechanisms is required. In addition, a description of its geometric characteristics, the calibration process, together with an illustrative experiment to demonstrate the good behavior of the platform is given.Postprint (author's final draft

    Efficient generic calibration method for general cameras with single centre of projection

    Get PDF
    Generic camera calibration is a non-parametric calibration technique that is applicable to any type of vision sensor. However, the standard generic calibration method was developed with the goal of generality and it is therefore sub-optimal for the common case of cameras with a single centre of projection (e.g. pinhole, fisheye, hyperboloidal catadioptric). This paper proposes novel improvements to the standard generic calibration method for central cameras that reduce its complexity, and improve its accuracy and robustness. Improvements are achieved by taking advantage of the geometric constraints resulting from a single centre of projection. Input data for the algorithm is acquired using active grids, the performance of which is characterised. A new linear estimation stage to the generic algorithm is proposed incorporating classical pinhole calibration techniques, and it is shown to be significantly more accurate than the linear estimation stage of the standard method. A linear method for pose estimation is also proposed and evaluated against the existing polynomial method. Distortion correction and motion reconstruction experiments are conducted with real data for a hyperboloidal catadioptric sensor for both the standard and proposed methods. Results show the accuracy and robustness of the proposed method to be superior to those of the standard method

    Building with Drones: Accurate 3D Facade Reconstruction using MAVs

    Full text link
    Automatic reconstruction of 3D models from images using multi-view Structure-from-Motion methods has been one of the most fruitful outcomes of computer vision. These advances combined with the growing popularity of Micro Aerial Vehicles as an autonomous imaging platform, have made 3D vision tools ubiquitous for large number of Architecture, Engineering and Construction applications among audiences, mostly unskilled in computer vision. However, to obtain high-resolution and accurate reconstructions from a large-scale object using SfM, there are many critical constraints on the quality of image data, which often become sources of inaccuracy as the current 3D reconstruction pipelines do not facilitate the users to determine the fidelity of input data during the image acquisition. In this paper, we present and advocate a closed-loop interactive approach that performs incremental reconstruction in real-time and gives users an online feedback about the quality parameters like Ground Sampling Distance (GSD), image redundancy, etc on a surface mesh. We also propose a novel multi-scale camera network design to prevent scene drift caused by incremental map building, and release the first multi-scale image sequence dataset as a benchmark. Further, we evaluate our system on real outdoor scenes, and show that our interactive pipeline combined with a multi-scale camera network approach provides compelling accuracy in multi-view reconstruction tasks when compared against the state-of-the-art methods.Comment: 8 Pages, 2015 IEEE International Conference on Robotics and Automation (ICRA '15), Seattle, WA, US
    • 

    corecore