4 research outputs found

    Design and Evaluation of Reliable Data Transmission Protocol in Wireless Sensor Networks

    Get PDF
    A wireless sensor-actuator network (WSAN) is composed of sensor modes and actuator modes which are interconnected in wireless networks. A sensor node collects information on the physical world and sends a sensed value in a wireless network. Another sensor node forwards the sensed value to deliver to an actuator node. A sensor node can deliver messages with sensed values to only nearby nodes due to weak radio. Messages are forwarded by sensor nodes to an actuator node by a type of flooding protocol. A sensor mode senses an event and sends a message with the sensed value. In addition, on receipt of a message with a sensed value from another sensor mode, a sensor node forwards the sensed value. Messages transmitted by sensor nodes might be lost due to noise and collisions. In this paper, we discuss a redundant data transmission (RT) protocol to reliably and efficiently deliver sensed values sensed by sensor nodes to an actuator node. Here, a sensor node sends a message with not only its sensed value but also sensed values received from other sensor nodes. The more number of sensed values are included in a message, the more frequently the message is lost. Each message carries so many number of sensed values that the message loss ratio is not increased. Even if a message with a sensed value v is lost in the wireless network, an actuator node can receive the sensed value v from a message sent by another sensor node. Thus, each sensed value is redundantly carried in multiple messages. The redundancy of a sensed value is in nature increased since the sensed value is broadcast. In order to reduce the redundancy of sensed value, we take a strategy that the farther sensor nodes from an actuator node forward the fewer number of sensed values. We evaluate the RT protocol in terms of loss ratio, redundancy, and delay time of a sensed value. We show that about 80% of sensed values can be delivered to an actuator node even if 95% of messages are lost due to noise and collision

    Coordination Protocols for a Reliable Sensor, Actuator, and Device Network (SADN)

    Get PDF

    Coordination protocols for a reliable sensor, actuator, and device network (SADN)

    Get PDF
    Abstract. A sensor, actuator, and device network (SADN) is composed of three types of nodes, which are sensor, actuator, and actuation device nodes. Sensor nodes and actuator nodes are interconnected in wireless networks as discussed in wireless sensor and actuator networks (WSANs). Actuator nodes and device nodes are interconnected in types of networks, i.e. wireless and wired network. Sensor nodes sense an physical event and send sensed values of the event to actuator nodes. An actuator node makes a decision on proper actions on receipt of sensed values and then issue the action requests to the device nodes. A device node really acts to the physical world. For example, moves a robot arms by performing the action on receipt of the action request. Messages may be lost and nodes may be faulty. Especially, messages are lost due to noise and collision in a wireless network. We propose a fully redundant model for an SADN where each of sensor, actuator, and device functions is replicated in multiple nodes and each of sensor-actuator and actuator-device communication is realized in many-to-many type of communication protocols. Even if some number of nodes are faulty, the other nodes can perform requested tasks. Here, each sensor node sends sensed values to multiple actuator nodes and each actuator node receives sensed values from multiple sensor nodes. While multiple actuator nodes communicate with multiple replica nodes of a device. Even if messages are lost and some number of nodes are faulty, device nodes can surely receive action requests required for sensed values and the actions are performed. In this paper, we discuss a type of semi-passive coordination (SPC) protocol of multiple actuator nodes for multiple sensor nodes. We discuss a type of active coordination protocol for multiple actuator nodes and multiple actuation device nodes. We evaluate the SPC protocol for the sensor-actuator coordination in terms of the number of messages exchanged among actuators

    Journal of Interconnection Networks c β—‹ World Scientific Publishing Company GEOMETRIC BROADCAST PROTOCOL FOR HETEROGENEOUS SENSOR NETWORKS

    No full text
    protocol for heterogeneous wireless sensor and actor networks. While broadcasting is a very energy expensive protocol, it is also widely used as a building block for a variety of other network layer protocols. Therefore, reducing the energy consumption by optimizing broadcasting is a major improvement in heterogenous sensor networking. GBS is a distributed algorithm where nodes make local decisions on whether to transmit based on a geometric approach. GBS does not need any neighborhood information and imposes very low communication overhead. GBS is scalable to the change in network size, node type, node density and topology. Furthermore it accommodates seamlessly such network changes, including the presence of actors in heterogeneous sensor networks. Indeed, GBS takes advantage of actor nodes, and uses their resources when possible, thus reducing the energy consumption by sensor nodes. Through simulation evaluations, we show that GBS is very scalable and its performance is improved by the presence of actors. At the best of our knowledge, GBS is the first broadcast protocol designed specifically for heterogeneous sensor and actor networks
    corecore