57,993 research outputs found

    Evaluating the influence of lake morphology, trophic status and diagenesis on geochemical profiles in lake sediments

    Get PDF
    Recent geochemical studies provide evidence that changes in vertical distributions of nutrients in lake sediments are driven by anthropogenic activities, based primarily on trends of increasing concentrations in upper sediment layers. However, we show that vertical concentration profiles of carbon (C), nitrogen (N) and phosphorus (P) in lake sediments can be higher in the upper, most recently deposited sediment strata, driven largely by natural diagenetic processes and not eutrophication alone. We examined sediment cores from 14 different lakes in New Zealand and China ranging from oligotrophic to highly eutrophic and shallow to deep, and found that the shape of vertical profiles of total P, a key nutrient for lake productivity, can be similar in sediments across gradients of widely differing trophic status. We derived and applied empirical and mechanistic diagenesis steady state profile models to describe the vertical distribution of C, N and P in the sediments. These models, which focus on large scale temporal (decades) and spatial (up to 35 cm in the vertical) processes, revealed that density-differentiated burial and biodiffusive mixing, were strongly correlated with vertical concentration gradients of sediment C, N and P content, whereas lake trophic status was not. A sensitivity analysis of parameters included in the diagenetic model further showed that the processes including flux of organic matter to the sediment-water interface, burial (net sedimentation), breakdown of organic matter and biodiffusion all significantly can influence the vertical distribution of sediment P content. We conclude that geochemical studies attempting to evaluate drivers of the vertical distribution of sediment C, N, and P content in lake sediments should also account for the natural diagenetic drivers of vertical concentration gradients, assisted with application of similar models to those presented in this study. This would include quantification of key sediment diagenesis model parameters to separate out the influence of anthropogenic activities

    National Soils Database

    Get PDF
    End of project reportThe objectives of the National Soils Database project were fourfold. The first was to generate a national database of soil geochemistry to complete the work that commenced with a survey of the South East of Ireland carried out in 1995 and 1996 by Teagasc (McGrath and McCormack, 1999). Secondly, to produce point and interpolated spatial distribution maps of major, minor and trace elements and to interpret these with respect to underlying parent material, glacial geology, land use and possible anthropogenic effects. A third objective was to investigate the microbial community structure in a range of soil types to determine the relationship between soil microbiology and chemistry. The final objective was to establish a National Soils Archive

    Uranium exploration methodology in cold climates

    Get PDF
    The uranium prospecting boom of the past decade had, as a major consequence, the rapid development and proliferation of exploration methods for source materials. Numerous established methods were developed and refined whilst new techniques were introduced proving, in some instances, to be highly successful. To the explorationist the proliferation of instrumental hardware and detection systems was something of a headache with the result that in uranium exploration, more so than in other types of prospecting, the choice of exploration method at the appropriate stage of prospecting was frequently ill founded. The situation also spawned ‘black box’ purveyors who made extravagant claims for their equipment. Money was wasted through over kill applications of exploration method accompanied in many instances by deficiencies in the interpretation of results. This project was originally conceived as a means of evaluating, reviewing and filtering from a burgeoning array of systems the most appropriate exploration techniques applicable to cold climate environments. This goal has been trimmed somewhat since it had been hoped to incorporate site investigation data assembled in the field by the writer as appropriate case history material. This was not possible and as a consequence this report is a 'state of the art review' of the applicability of currently available techniques in Arctic and Subarctic environments. Reference is made to published case history data, where appropriate, supportive of the techniques or methods reviewed.Abstract -- Introduction -- Prospecting methods in relation to Arctic and Subarctic environments -- Review of direct exploration methods -- Radiometric methods -- Airborne spectrometry -- Car borne and hand held instrumentation -- Geochemical methods -- Soil and stream sediment methods -- Geobotanical methods -- Water sampling - Hydrogeochemical methods -- Other metods -- Optimal exploration method selection -- References -- Table of exploration methods discussed in this report

    Timescales for the development of methanogenesis and free gas layers in recently-deposited sediments of Arkona Basin (Baltic Sea)

    Get PDF
    Arkona Basin (southwestern Baltic Sea) is a seasonally-hypoxic basin characterized by the presence of free methane gas in its youngest organic-rich muddy stratum. Through the use of reactive transport models, this study tracks the development of the methane geochemistry in Arkona Basin as this muddy sediment became deposited during the last 8 kyr. Four cores are modeled each pertaining to a unique geochemical scenario according to their respective contemporary geochemical profiles. Ultimately the thickness of the muddy sediment and the flux of particulate organic carbon are crucial in determining the advent of both methanogenesis and free methane gas, the timescales over which methanogenesis takes over as a dominant reaction pathway for organic matter degradation, and the timescales required for free methane gas to form

    Assessment of metals behaviour in industrial soil using sequential extraction, multivariable analysis and a geostatistical approach

    Get PDF
    The main objectives of this studywere to evaluate the degree of Pb, Cu, Zn, Cd, Cr and Ni pollution using pollution indexes and geostatistical approach, and to assess metals dynamic using sequential extraction procedure and multivariable statistical analysis in surface soils and soil profiles froman industrial complex as a base for a correct management in order to avoid health and environmental problems. Results showed that the industrial activity increases both Pb (103 mgkg−1), Zn (526 mgkg−1) and Cu (39 mgkg−1) concentrations and salinity in soil. Pollution indexes showed that industrial soils were moderately contaminated by Zn, Pb, Cu, Cr and Ni as well as a moderate ecological risk was reported. Two main areas were identified: southeast area with the highest metal concentrations, and northwest areawith the lowest levels. Chemical speciation of metals showed that the residual phase was the dominant phase for all metals. However, Pb and Zn were highly associated to the reducible phase (25–30% and 35–40% respectively) and a significant concentration was associated to carbonates (5% for both metals). In contrast, Cu, Cr and Ni were mainly bound to the residual phase (N80% for all metals) with low concentrations retained to reducible phase, and very low concentrations bound to the most labile phases. Cd was the most mobile metal with high concentration associated to exchangeable (5%) and carbonates (15–20%) phases. Therefore, Pb, Zn and Cd represent the greatest risk for human health and the environment

    Ferromanganese nodules and micro-hardgrounds associated with the Cadiz Contourite Channel (NE Atlantic): Palaeoenvironmental records of fluid venting and bottom currents

    Get PDF
    Ferromanganese nodule fields and hardgrounds have recently been discovered in the Cadiz Contourite Channel in the Gulf of Cadiz (850–1000 m). This channel is part of a large contourite depositional system generated by the Mediterranean Outflow Water. Ferromanganese deposits linked to contourites are interesting tools for palaeoenviromental studies and show an increasing economic interest as potential mineral resources for base and strategic metals. We present a complete characterisation of these deposits based on submarine photographs and geophysical, petrographic, mineralogical and geochemical data. The genesis and growth of ferromanganese deposits, strongly enriched in Fe vs. Mn (av. 39% vs. 6%) in this contourite depositional system result from the combination of hydrogenetic and diagenetic processes. The interaction of the Mediterranean Outflow Water with the continental margin has led to the formation of Late Pleistocene–Holocene ferromanganese mineral deposits, in parallel to the evolution of the contourite depositional system triggered by climatic and tectonic events. The diagenetic growth was fuelled by the anaerobic oxidation of thermogenic hydrocarbons (δ13CPDB=−20 to −37‰) and organic matter within the channel floor sediments, promoting the formation of Fe–Mn carbonate nodules. High 87Sr/86Sr isotopic values (up to 0.70993±0.00025) observed in the inner parts of nodules are related to the influence of radiogenic fluids fuelled by deep-seated fluid venting across the fault systems in the diapirs below the Cadiz Contourite Channel. Erosive action of the Mediterranean Outflow Water undercurrent could have exhumed the Fe–Mn carbonate nodules, especially in the glacial periods, when the lower core of the undercurrent was more active in the study area. The growth rate determined by 230Thexcess/232Th was 113±11 mm/Ma, supporting the hypothesis that the growth of the nodules records palaeoenvironmental changes during the last 70 ka. Ca-rich layers in the nodules could point to the interaction between the Mediterranean Outflow Water and the North Atlantic Deep Water during the Heinrich events. Siderite–rhodochrosite nodules exposed to the oxidising seabottom waters were replaced by Fe–Mn oxyhydroxides. Slow hydrogenetic growth of goethite from the seawaters is observed in the outermost parts of the exhumed nodules and hardgrounds, which show imprints of the Mediterranean Outflow Water with low 87Sr/86Sr isotopic values (down to 0.70693±0.00081). We propose a new genetic and evolutionary model for ferromanganese oxide nodules derived from ferromanganese carbonate nodules formed on continental margins above the carbonate compensation depth and dominated by hydrocarbon seepage structures and strong erosive action of bottom currents. We also compare and discuss the generation of ferromanganese deposits in the Cadiz Contourite Channel with that in other locations and suggest that our model can be applied to ferromanganiferous deposits in other contouritic systems affected by fluid venting

    Primary crustal melt compositions: Insights into the controls, mechanisms and timing of generation from kinetics experiments and melt inclusions

    Get PDF
    We explore the controls, mechanisms and timing of generation of primary melts and their compositions, and show that the novel studies of melt inclusions in migmatites can provide important insights into the processes of crustal anatexis of a particular rock. Partial melting in the source region of granites is dependent on five main processes: (i) supply of heat; (ii) mineral–melt interface reactions associated with the detachment and supply of mineral components to the melt, (iii) diffusion in the melt, (iv) diffusion in minerals, and (v) recrystallization of minerals. As the kinetics of these several processes vary over several orders of magnitude, it is essential to evaluate in Nature which of these processes control the rate of melting, the composition of melts, and the extent to which residue–melt chemical equilibrium is attained under different circumstances. To shed light on these issues, we combine data from experimental and melt inclusion studies. First, data from an extensive experimental program on the kinetics of melting of crustal protoliths and diffusion in granite melt are used to set up the necessary framework that describes how primary melt compositions are established during crustal anatexis. Then, we use this reference frame and compare compositional trends from experiments with the composition of melt inclusions analyzed in particular migmatites. We show that, for the case of El Hoyazo anatectic enclaves in lavas, the composition of glassy melt inclusions provides important information on the nature and mechanisms of anatexis during the prograde suprasolidus history of these rocks, including melting temperatures and reactions, and extent of melt interconnection, melt homogenization and melt–residue equilibrium. Compositional trends in several of the rehomogenized melt inclusions in garnet from migmatites/granulites in anatectic terranes are consistent with diffusion in melt-controlled melting, though trace element compositions of melt inclusions and coexisting minerals are necessary to provide further clues on the nature of anatexis in these particular rocks.This work was supported by the National Science Foundation [grants EAR-9603199, EAR-9618867, EAR-9625517 and EAR-9404658], the Italian Consiglio Nazionale delle Ricerche, the European Commission (grant 01-LECEMA22F through contract No. ERAS-CT-2003-980409; and a H2020 Marie Skłodowska-Curie Actions under grant agreement No. 654606), the Italian Ministry of Education, University and Research (grants PRIN 2007278A22, 2010TT22SC and SIR RBSI14Y7PF), the Università degli Studi di Padova [Progetto di Ateneo CPDA107188/10 and a Piscopia—Marie Curie Fellowship under grant agreement No. 600376], the Australian Research Council (Australian Professorial Fellowship and Discovery Grants Nos. DP0342473 and DP0556700), and the National Research Foundation (South Africa; Incentives For Rated Researchers Program)

    4. Wochenbericht M77/1

    Get PDF
    Im Pazifischen Ozean erstreckt sich westlich von Peru und Ecuador ein riesiges Gebiet, in dem lebenswichtiger Sauerstoff Mangelware ist. Dieses Gebiet ist Ziel der Expedition „M77“, zu der das deutsche Forschungsschiff METEOR am 22. Oktober 2008 ausläuft. Sie steht unter der Leitung von Kieler Meereswissenschaftlern des Sonderforschungsbereichs (SFB) 754, an dem das Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR) und die Christian-Albrechts-Universität zu Kiel (CAU) beteiligt sind. In einem Weblog berichten die Forscher direkt von Bord der METEOR über ihrer Arbeit. METEOR Cruise 77/1 Talcahuano (Chile) – Callao (Peru) Weekly Report No. 4: 10. - 16. 11. 0

    Anoxic nitrification in marine sediments

    Get PDF
    Nitrate peaks are found in pore-water profiles in marine sediments at depths considerably below the conventional zone of oxic nitrification. These have been interpreted to represent nonsteady- state effects produced by the activity of nitrifying bacteria, and suggest that nitrification occurs throughout the anoxic sediment region. In this study, ΣNO3 peaks and molecular analysis of DNA and RNA extracted from anoxic sediments of Loch Duich, an organic-rich marine fjord, are consistent with nitrification occurring in the anoxic zone. Analysis of ammonia oxidiser 16S rRNA gene fragments amplified from sediment DNA indicated the abundance of autotrophic ammonia-oxidising bacteria throughout the sediment depth sampled (40 cm), while RT-PCR analysis indicated their potential activity throughout this region. A large non-steady-state pore-water ΣNO3 peak at ~21 cm correlated with discontinuities in this ammonia-oxidiser community. In addition, a subsurface nitrate peak at ~8 cm below the oxygen penetration depth, correlated with the depth of a peak in nitrification rate, assessed by transformation of 15N-labelled ammonia. The source of the oxidant required to support nitrification within the anoxic region is uncertain. It is suggested that rapid recycling of N is occurring, based on a coupled reaction involving Mn oxides (or possibly highly labile Fe oxides) buried during small-scale slumping events. However, to fully investigate this coupling, advances in the capability of high-resolution pore-water techniques are required
    corecore