3 research outputs found

    Solving large 0–1 multidimensional knapsack problems by a new simplified binary artificial fish swarm algorithm

    Get PDF
    The artificial fish swarm algorithm has recently been emerged in continuous global optimization. It uses points of a population in space to identify the position of fish in the school. Many real-world optimization problems are described by 0-1 multidimensional knapsack problems that are NP-hard. In the last decades several exact as well as heuristic methods have been proposed for solving these problems. In this paper, a new simpli ed binary version of the artificial fish swarm algorithm is presented, where a point/ fish is represented by a binary string of 0/1 bits. Trial points are created by using crossover and mutation in the different fi sh behavior that are randomly selected by using two user de ned probability values. In order to make the points feasible the presented algorithm uses a random heuristic drop item procedure followed by an add item procedure aiming to increase the profit throughout the adding of more items in the knapsack. A cyclic reinitialization of 50% of the population, and a simple local search that allows the progress of a small percentage of points towards optimality and after that refines the best point in the population greatly improve the quality of the solutions. The presented method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method can be an alternative method for solving these problems.The authors wish to thank three anonymous referees for their comments and valuable suggestions to improve the paper. The first author acknowledges Ciˆencia 2007 of FCT (Foundation for Science and Technology) Portugal for the fellowship grant C2007-UMINHO-ALGORITMI-04. Financial support from FEDER COMPETE (Operational Programme Thematic Factors of Competitiveness) and FCT under project FCOMP-01-0124-FEDER-022674 is also acknowledged

    A Binary differential search algorithm for the 0-1 multidimensional knapsack problem

    Get PDF
    The multidimensional knapsack problem (MKP) is known to be NP-hard in operations research and it has a wide range of applications in engineering and management. In this study, we propose a binary differential search method to solve 0-1 MKPs where the stochastic search is guided by a Brownian motion-like random walk. Our proposed method comprises two main operations: discrete solution generation and feasible solution production. Discrete solutions are generated by integrating Brownian motion-like random search with an integer-rounding operation. However, the rounded discrete variables may violate the constraints. Thus, a feasible solution production strategy is used to maintain the feasibility of the rounded discrete variables. To demonstrate the efficiency of our proposed algorithm, we solved various 0-1 MKPs using our proposed algorithm as well as some existing meta-heuristic methods. The numerical results obtained demonstrated that our algorithm performs better than existing meta-heuristic methods. Furthermore, our algorithm has the capacity to solve large-scale 0-1 MKPs
    corecore