619,135 research outputs found

    A NEW SYNDROME WITH QUADRUPEDAL GAIT, PRIMITIVE SPEECH, AND SEVERE MENTAL RETARDATION AS A LIVE MODEL FOR HUMAN EVOLUTION

    Get PDF
    The author has discovered a new syndrome with quadrupedal gait, flexed head and body, primitive speech, severe mental retardation, and mild cerebellar signs with a disturbed conscious experience. This syndrome was exhibited by 5 of 19 children from a consanguineous family. The pedigree demonstrated a typical autosomal-recessive inheritance. The genetic nature of this syndrome suggests a backward stage in human evolution, which is most probably caused by a genetic mutation, rendering, in turn, the transition from quadrupedality to bipedality. This would then be consistent with theories of punctuated evolution. On the other hand, the extensor motor system causing a resistance of the body against the gravity may actually be subjected to evolutionary forces. This new syndrome may be used as a live model for human evolution

    Correlates of genetic monogamy in socially monogamous mammals: insights from Azara's owl monkeys

    Get PDF
    Understanding the evolution of mating systems, a central topic in evolutionary biology for more than 50 years, requires examining the genetic consequences of mating and the relationships between social systems and mating systems. Among pair-living mammals, where genetic monogamy is extremely rare, the extent of extra-group paternity rates has been associated withmale participation in infant care, strength of the pair bond and length of the breeding season. This study evaluated the relationship between two of those factors and the genetic mating system of socially monogamous mammals, testing predictions that male care and strength of pair bond would be negatively correlated with rates of extra-pair paternity (EPP). Autosomal microsatellite analyses provide evidence for genetic monogamy in a pair-living primate with bi-parental care, the Azara’s owl monkey (Aotus azarae). A phylogenetically corrected generalized least square analysis was used to relate male care and strength of the pair bond to their genetic mating system (i.e. proportions of EPP) in 15 socially monogamous mammalian species. The intensity of male care was correlated with EPP rates in mammals, while strength of pair bond failed to reach statistical significance. Our analyses showthat, once social monogamy has evolved, paternal care, and potentially also close bonds, may facilitate the evolution of genetic monogamy.German Science Foundation (HU 1746/2-1); Wenner-Gren Foundation; L.S.B. Leakey Foundation;National Geographic Society; National Science Foundation (BCS-0621020, 1219368, and 1232349); the University of Pennsylvania Research Foundation; the Zoological Society of San Dieg

    Experimental harvesting of fish populations drives genetically based shifts in body size and maturation

    Get PDF
    Size-selective harvesting in commercial fisheries can induce rapid changes in biological traits. While experimental and wild harvested populations often exhibit clear shifts in body size and maturation associated with fishing pressure, the relative contributions of genetic and environmental factors to these shifts remain uncertain and have been much debated. To date, observations of so-called fisheries-induced evolution (FIE) have been based solely on phenotypic measures, such as size data. Genetic data are hitherto lacking. Here, we quantify genetic versus environmental change in response to size-selective harvesting for small and large body size in guppies (Poecilia reticulata) across three generations of selection. We document for the first time significant changes at individual genetic loci, some of which have previously been associated with body size. In contrast, variation at neutral microsatellite markers was unaffected by selection, providing direct genetic evidence for rapid evolution induced by size-selective harvesting. These findings demonstrate FIE in an experimental system, with major implications for the sustainability of harvested populations, as well as impacts on size-structured communities and ecosystem processes. These findings highlight the need for scientists and managers to reconsider the capacity of harvested stocks to adapt to, and recover from, harvesting and predation. © 2013 The Ecological Society of America

    Computer simulations on the sympatric speciation modes for the Midas cichlid species complex

    Get PDF
    Cichlid fishes are one of the best model system for the study of evolution of the species. Inspired by them, in this paper we simulated the splitting of a single species into two separate ones via random mutations, with both populations living together in sympatry, sharing the same habitat. We study the ecological, mating and genetic conditions needed to reproduce the polychromatism and polymorphism of three species of the Midas Cichlid species complex. Our results show two scenarios for the A. Citrinellus speciation process, one with and the other without disruptive natural selection. 
In the first scenario, the ecological and genetic conditions are sufficient to create two new species, while in the second the mating and genetic conditions must be synchronized in order to control the velocity of genetic drift
    • …
    corecore