7 research outputs found

    Genetic Assimilation and Canalisation in the Baldwin Effect

    No full text
    The Baldwin Effect indicates that individually learned behaviours acquired during an organism’s lifetime can influence the evolutionary path taken by a population, without any direct Lamarckian transfer of traits from phenotype to genotype. Several computational studies modelling this effect have included complications that restrict its applicability. Here we present a simplified model that is used to reveal the essential mechanisms and highlight several conceptual issues that have not been clearly defined in prior literature. In particular, we suggest that canalisation and genetic assimilation, often conflated in previous studies, are separate concepts and the former is actually not required for non-heritable phenotypic variation to guide genetic variation. Additionally, learning, often considered to be essential for the Baldwin Effect, can be replaced with a more general phenotypic plasticity model. These simplifications potentially permit the Baldwin Effect to operate in much more general circumstances

    On crossing fitness valleys with the Baldwin Effect

    No full text
    Escaping local optima and crossing fitness valleys to reach higher-fitness regions of a fitness landscape is a ubiquitous concept in much writing on evolutionary difficulty. The Baldwin effect, an interaction between non-heritable lifetime plasticity (e.g. learning) and evolution, has been shown to be able to guide evolutionary change and ‘smooth out’ abrupt fitness changes in fitness landscapes –thus enabling genetic evolution that would otherwise not occur. However, prior work has not provided a detailed study or analysis on the saddle-crossing ability of the Baldwin effect in a simple multi-peaked landscape. Here we provide analytic and simulation studies to investigate the effectiveness and limitations of the Baldwin effect in enabling genotypic evolution to cross fitness valleys. We also discuss how canalisation, an aspect of many prior models of the Baldwin effect, is unnecessary for the Baldwin effect and a hindrance to its valley-crossing ability

    Transformations in the Scale of Behaviour and the Global Optimisation of Constraints in Adaptive Networks

    No full text
    The natural energy minimisation behaviour of a dynamical system can be interpreted as a simple optimisation process, finding a locally optimal resolution of problem constraints. In human problem solving, high-dimensional problems are often made much easier by inferring a low-dimensional model of the system in which search is more effective. But this is an approach that seems to require top-down domain knowledge; not one amenable to the spontaneous energy minimisation behaviour of a natural dynamical system. However, in this paper we investigate the ability of distributed dynamical systems to improve their constraint resolution ability over time by self-organisation. We use a ‘self-modelling’ Hopfield network with a novel type of associative connection to illustrate how slowly changing relationships between system components can result in a transformation into a new system which is a low-dimensional caricature of the original system. The energy minimisation behaviour of this new system is significantly more effective at globally resolving the original system constraints. This model uses only very simple, and fully-distributed positive feedback mechanisms that are relevant to other ‘active linking’ and adaptive networks. We discuss how this neural network model helps us to understand transformations and emergent collective behaviour in various non-neural adaptive networks such as social, genetic and ecological networks

    James Mark Baldwin with Alfred North Whitehead on Organic Selectivity: The "Novel” Factor in Evolution

    Get PDF
    The aim of this paper is to show how James Mark Baldwin's theory of Organic Selection (also known as the "Baldwin effect”) can be fruitfully integrated with Alfred North Whitehead's speculative philosophy, as part of the endeavor to develop a comprehensive process-relational evolutionary cosmology. In so doing, it provides an overview of the theory of Organic Selection and points to several concrete examples from the Galapagos Islands which elucidate Baldwin's claim that organisms, through their selective activities and behavioral adjustments, play a causal role in directing evolutionary processes. I emphasize some of the affinities between Baldwin's theory of Organic Selection and Whitehead's theory of prehensions, especially focusing on the latter's notion of "prehensive selectivity.” Overall, while Baldwin's theory of Organic Selection provides a biological ground for a comprehensive process-relational evolutionary cosmology to be developed, illuminating the importance of Whitehead's theory of prehensions for evolutionary theory, Whitehead's overall speculative scheme can, in turn, strengthen the metaphysical, epistemological, and ethical foundations of Baldwin's theory. In the course of merging the two views, I arrive at an enlarged conception of Organic Selection, placing it in context with Darwin's principle of Natural Selection. At the end of the paper, I take up the resulting question of the ethics of selectivity in general, arguing that the merger of Baldwin's and Whitehead's ideas constitutes a "non-reductionistic critical pan-selectionism.” This position stands in contrast to the antagonistic standpoints of "Selectionism” and "Anti-Selectionism” in the ongoing debates over the ethical dimensions of evolution

    From Assessing to Conserving biodiversity. Conceptual and Practical Challenges

    Get PDF
    This open access book features essays written by philosophers, biologists, ecologists and conservation scientists facing the current biodiversity crisis. Despite increasing communication, accelerating policy and management responses, and notwithstanding improving ecosystem assessment and endangered species knowledge, conserving biodiversity continues to be more a concern than an accomplished task. Why is it so? The overexploitation of natural resources by our species is a frequently recognised factor, while the short-term economic interests of governments and stakeholders typically clash with the burdens that implementing conservation actions imply. But this is not the whole story. This book develops a different perspective on the problem by exploring the conceptual challenges and practical defiance posed by conserving biodiversity, namely: on the one hand, the difficulties in defining what biodiversity is and characterizing that “thing” to which the word ‘biodiversity’ refers to; on the other hand, the reasons why assessing biodiversity and putting in place effective conservation actions is arduous. ; Features essays that are explicitly critical of the species approach to biodiversity Presents bio-philosophical perspectives on the interaction between biodiversity’s units, levels, and scales Serves as an interdisciplinary contribution to the emergent field of biodiversity studie

    Genetic Assimilation and Canalisation in The Baldwin Effect

    No full text
    Abstract. The Baldwin Effect indicates that individually learned behaviours acquired during an organism’s lifetime can influence the evolutionary path taken by a population, without any direct Lamarckian transfer of traits from phenotype to genotype. Several computational studies modelling this effect have included complications that restrict its applicability. Here we present a simplified model that is used to reveal the essential mechanisms and highlight several conceptual issues that have not been clearly defined in prior literature. In particular, we suggest that canalisation and genetic assimilation, often conflated in previous studies, are separate concepts and the former is actually not required for non-heritable phenotypic variation to guide genetic variation. Additionally, learning, often considered to be essential for the Baldwin Effect, can be replaced with a more general phenotypic plasticity model. These simplifications potentially permit the Baldwin Effect to operate in much more general circumstances.
    corecore