7 research outputs found

    Elites, communities and the limited benefits of mentorship in electronic music

    Get PDF
    While the emergence of success in creative professions, such as music, has been studied extensively, the link between individual success and collaboration is not yet fully uncovered. Here we aim to fill this gap by analyzing longitudinal data on the co-releasing and mentoring patterns of popular electronic music artists appearing in the annual Top 100 ranking of DJ Magazine. We find that while this ranking list of popularity publishes 100 names, only the top 20 is stable over time, showcasing a lock-in effect on the electronic music elite. Based on the temporal co-release network of top musicians, we extract a diverse community structure characterizing the electronic music industry. These groups of artists are temporally segregated, sequentially formed around leading musicians, and represent changes in musical genres. We show that a major driving force behind the formation of music communities is mentorship: around half of musicians entering the top 100 have been mentored by current leading figures before they entered the list. We also find that mentees are unlikely to break into the top 20, yet have much higher expected best ranks than those who were not mentored. This implies that mentorship helps rising talents, but becoming an all-time star requires more. Our results provide insights into the intertwined roles of success and collaboration in electronic music, highlighting the mechanisms shaping the formation and landscape of artistic elites in electronic music

    Fast calculation of the variance of edge crossings

    Full text link
    The crossing number, i.e. the minimum number of edge crossings arising when drawing a graph on a certain surface, is a very important problem of graph theory. The opposite problem, i.e. the maximum crossing number, is receiving growing attention. Here we consider a complementary problem of the distribution of the number of edge crossings, namely the variance of the number of crossings, when embedding the vertices of an arbitrary graph in some space at random. In his pioneering research, Moon derived that variance on random linear arrangements of complete unipartite and bipartite graphs. Given the need of efficient algorithms to support this sort of research and given also the growing interest of the number of edge crossings in spatial networks, networks where vertices are embedded in some space, here we derive algorithms to calculate the variance in arbitrary graphs in o(nm2)o(nm^2)-time, and in forests in O(n)O(n)-time. These algorithms work on a wide range of random layouts (not only on Moon's) and are based on novel arithmetic expressions for the calculation of the variance that we develop from previous theoretical work. This paves the way for many applications that rely on a fast but exact calculation of the variance.Comment: Better connection with graph theory (crossing number). Introduction and discussion substantially rewritten. Minor corrections in other parts of the articl

    The optimality of syntactic dependency distances

    Get PDF
    It is often stated that human languages, as other biological systems, are shaped by cost-cutting pressures but, to what extent? Attempts to quantify the degree of optimality of languages by means of an optimality score have been scarce and focused mostly on English. Here we recast the problem of the optimality of the word order of a sentence as an optimization problem on a spatial network where the vertices are words, arcs indicate syntactic dependencies and the space is defined by the linear order of the words in the sentence. We introduce a new score to quantify the cognitive pressure to reduce the distance between linked words in a sentence. The analysis of sentences from 93 languages representing 19 linguistic families reveals that half of languages are optimized to a 70% or more. The score indicates that distances are not significantly reduced in a few languages and confirms two theoretical predictions, i.e. that longer sentences are more optimized and that distances are more likely to be longer than expected by chance in short sentences. We present a new hierarchical ranking of languages by their degree of optimization. The statistical advantages of the new score call for a reevaluation of the evolution of dependency distance over time in languages as well as the relationship between dependency distance and linguistic competence. Finally, the principles behind the design of the score can be extended to develop more powerful normalizations of topological distances or physical distances in more dimensions

    Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations

    Get PDF
    The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well-known consensus and adjacency dynamics.Comment: 8 page
    corecore