29 research outputs found

    <strong>Generic Patch Inference</strong>

    No full text

    FixMiner: Mining Relevant Fix Patterns for Automated Program Repair

    Get PDF
    Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PARFixMiner, with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PARFixMiner's generated plausible patches are correct.Comment: 31 pages, 11 figure

    Matching dependence-related queries in the system dependence graph.

    Get PDF
    In software maintenance and evolution, it is common that develop-ers want to apply a change to a number of similar places. Due to the size and complexity of the code base, it is challenging for develop-ers to locate all the places that need the change. A main challenge in locating the places that need the change is that, these places share certain common dependence conditions but existing code searching techniques can hardly handle dependence relations satisfactorily. In this paper, we propose a technique that enables developers to make queries involving dependence conditions and textual condi-tions on the system dependence graph of the program. We carried out an empirical evaluation on four searching tasks taken from the development history of two real-world projects. The results of our evaluation indicate that, compared with code-clone detection, our technique is able to locate many required code elements that code-clone detection cannot locate, and compared with text search, our technique is able to effectively reduce false positives without losing any required code elements

    Impact of Tool Support in Patch Construction

    Get PDF
    International audienceIn this work, we investigate the practice of patch construction in the Linux kernel development, focusing on the dfferences between three patching processes: (1) patches crafted entirely manually to fix bugs, (2) those that are derived from warnings of bug detection tools, and (3) those that are automatically generated based on fix patterns. With this study, we provide to the research community concrete insights on the practice of patching as well as how the development community is currently embracing research and commercial patching tools to improve productivity in repair. The result of our study shows that tool-supported patches are increasingly adopted by the developer community while manually-written patches are accepted more quickly. Patch application tools enable developers to remain committed to contributing patches to the code base. Our findings also include that, in actual development processes, patches generally implement several change operationsspread over the code, even for patches fixing warnings by bug detection tools. Finally, this study has shown that there is an opportunity to directly leverage the output of bug detection tools to readily generate patches that are appropriate for fixing the problem and that are consistent with manually-written patches

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    A Systematic Review of the Literature of the Techniques to Perform Transformations in Software Engineering / Uma revisão sistemática da literatura das técnicas para realizar transformações na engenharia de software

    Get PDF
    Along with software evolution, developers may do repetitive edits. These edits can be identical or similar to different codebase locations, which may occur as developers add features, refactor, or fix a bug. Since some of these edits are not present in Integrated Development Environments (IDEs), they are often performed manually, which is time-consuming and error-prone. In order to help developers to apply repetitive edits, some techniques were proposed. In this work, we present a systematic review of the literature of the techniques to do transformations in software engineering. As a result, this systematic review returned 51 works ranging from the domains programming-by-examples, linked editing, API usage, bug fixing, complex refactoring, and complex transformations, which can be used to help tools' designer in the proposition of new approaches.  Along with software evolution, developers may do repetitive edits. These edits can be identical or similar to different codebase locations, which may occur as developers add features, refactor, or fix a bug. Since some of these edits are not present in Integrated Development Environments (IDEs), they are often performed manually, which is time-consuming and error-prone. In order to help developers to apply repetitive edits, some techniques were proposed. In this work, we present a systematic review of the literature of the techniques to do transformations in software engineering. As a result, this systematic review returned 51 works ranging from the domains programming-by-examples, linked editing, API usage, bug fixing, complex refactoring, and complex transformations, which can be used to help tools' designer in the proposition of new approaches.
    corecore