4,699 research outputs found

    OCC: A Smart Reply System for Efficient In-App Communications

    Full text link
    Smart reply systems have been developed for various messaging platforms. In this paper, we introduce Uber's smart reply system: one-click-chat (OCC), which is a key enhanced feature on top of the Uber in-app chat system. It enables driver-partners to quickly respond to rider messages using smart replies. The smart replies are dynamically selected according to conversation content using machine learning algorithms. Our system consists of two major components: intent detection and reply retrieval, which are very different from standard smart reply systems where the task is to directly predict a reply. It is designed specifically for mobile applications with short and non-canonical messages. Reply retrieval utilizes pairings between intent and reply based on their popularity in chat messages as derived from historical data. For intent detection, a set of embedding and classification techniques are experimented with, and we choose to deploy a solution using unsupervised distributed embedding and nearest-neighbor classifier. It has the advantage of only requiring a small amount of labeled training data, simplicity in developing and deploying to production, and fast inference during serving and hence highly scalable. At the same time, it performs comparably with deep learning architectures such as word-level convolutional neural network. Overall, the system achieves a high accuracy of 76% on intent detection. Currently, the system is deployed in production for English-speaking countries and 71% of in-app communications between riders and driver-partners adopted the smart replies to speedup the communication process.Comment: link to demo: https://www.youtube.com/watch?v=nOffUT7rS0A&t=32

    Document-Driven Design for Distributed CAD Services in Service-Oriented Architecture

    Get PDF
    Current computer-aided design (CAD) systems only support interactive geometry generation, which is not ideal for distributed engineering services in enterprise-to-enterprise collaboration with a generic thin-client service-oriented architecture. This paper proposes a new feature-based modeling mechanism—document-driven design—to enable batch mode geometry construction for distributed CAD systems. A semantic feature model is developed to represent informative and communicative design intent. Feature semantics is explicitly captured as a trinary relation, which provides good extensibility and prevents semantics loss. Data interoperability between domains is enhanced by schema mapping and multiresolution semantics. This mechanism aims to enable asynchronous communication in distributed CAD environments with ease of design alternative evaluation and reuse, reduced human errors, and improved system throughput and utilization

    Personalized Maneuver Prediction at Intersections

    Get PDF
    Losing V, Hammer B, Wersing H. Personalized Maneuver Prediction at Intersections. Presented at the IEEE Intelligent Transportation Systems Conference 2017, Yokohama

    Personalized Maneuver Prediction at Intersections

    Get PDF
    Losing V, Hammer B, Wersing H. Personalized Maneuver Prediction at Intersections. Presented at the IEEE Intelligent Transportation Systems Conference 2017, Yokohama
    • …
    corecore