140 research outputs found

    Network security mechanisms and implementations for the next generation reliable fast data transfer protocol - UDT

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.TCP protocol variants (such as FAST, BiC, XCP, Scalable and High Speed) have demonstrated improved performance in simulation and in several limited network experiments. However, practical use of these protocols is still very limited because of implementation and installation difficulties. Users who require to transfer bulk data (e.g., in Cloud/GRID computing) usually turn to application level solutions where these variants do not fair well. Among protocols considered in the application level are User Datagram Protocol (UDP)-based protocols, such as UDT (UDP-based Data Transport Protocol). UDT is one of the most recently developed new transport protocols with congestion control algorithms. It was developed to support next generation high-speed networks, including wide area optical networks. It is considered a state-of-the-art protocol, addressing infrastructure requirements for transmitting data in high-speed networks. Its development, however, creates new vulnerabilities because like many other protocols, it relies solely on the existing security mechanisms for current protocols such as the Transmission Control Protocol (TCP) and UDP. Certainly, both UDT and the decades-old TCP/UDP lack a well-thought-out security architecture that addresses problems in today’s networks. In this dissertation, we focus on investigating UDT security issues and offer important contributions to the field of network security. The choice of UDT is significant for several reasons: UDT as a newly designed next generation protocol is considered one of the most promising and fastest protocols ever created that operates on top of the UDP protocol. It is a reliable UDP-based application-level data-transport protocol intended for distributing data intensive applications over wide area high-speed networks. It can transfer data in a highly configurable framework and can accommodate various congestion control algorithms. Its proven success at transferring terabytes of data gathered from outer space across long distances is a testament to its significant commercial promise. In this work, our objective is to examine a range of security methods used on existing mature protocols such as TCP and UDP and evaluate their viability for UDT. We highlight the security limitations of UDT and determine the threshold of feasible security schemes within the constraints under which UDT was designed and developed. Subsequently, we provide ways of securing applications and traffic using UDT protocol, and offer recommendations for securing UDT. We create security mechanisms tailored for UDT and propose a new security architecture that can assist network designers, security investigators, and users who want to incorporate security when implementing UDT across wide area networks. We then conduct practical experiments on UDT using our security mechanisms and explore the use of other existing security mechanisms used on TCP/UDP for UDT. To analyse the security mechanisms, we carry out a formal proof of correctness to assist us in determining their applicability by using Protocol Composition Logic (PCL). This approach is modular, comprising a separate proof of each protocol section and providing insight into the network environment in which each section can be reliably employed. Moreover, the proof holds for a variety of failure recovery strategies and other implementation and configuration options. We derive our technique from the PCL on TLS and Kerberos in the literature. We maintain, however, the novelty of our work for UDT particularly our newly developed mechanisms such as UDT-AO, UDT-DTLS, UDT-Kerberos (GSS-API) specifically for UDT, which all now form our proposed UDT security architecture. We further analyse this architecture using rewrite systems and automata. We outline and use symbolic analysis approach to effectively verify our proposed architecture. This approach allows dataflow replication in the implementation of selected mechanisms that are integrated into the proposed architecture. We consider this approach effective by utilising the properties of the rewrite systems to represent specific flows within the architecture to present a theoretical and reliable method to perform the analysis. We introduce abstract representations of the components that compose the architecture and conduct our investigation, through structural, semantics and query analyses. The result of this work, which is first in the literature, is a more robust theoretical and practical representation of a security architecture of UDT, viable to work with other high speed network protocols

    A pragmatic approach: Achieving acceptable security mechanisms for high speed data transfer protocol-UDT

    Full text link
    The development of next generation protocols, such as UDT (UDP-based data transfer), promptly addresses various infrastructure requirements for transmitting data in high speed networks. However, this development creates new vulnerabilities when these protocols are designed to solely rely on existing security solutions of existing protocols such as TCP and UDP. It is clear that not all security protocols (such as TLS) can be used to protect UDT, just as security solutions devised for wired networks cannot be used to protect the unwired ones. The development of UDT, similarly in the development of TCP/UDP many years ago, lacked a well-thought security architecture to address the problems that networks are presently experiencing. This paper proposes and analyses practical security mechanisms for UDT

    Security for Grid Services

    Full text link
    Grid computing is concerned with the sharing and coordinated use of diverse resources in distributed "virtual organizations." The dynamic and multi-institutional nature of these environments introduces challenging security issues that demand new technical approaches. In particular, one must deal with diverse local mechanisms, support dynamic creation of services, and enable dynamic creation of trust domains. We describe how these issues are addressed in two generations of the Globus Toolkit. First, we review the Globus Toolkit version 2 (GT2) approach; then, we describe new approaches developed to support the Globus Toolkit version 3 (GT3) implementation of the Open Grid Services Architecture, an initiative that is recasting Grid concepts within a service oriented framework based on Web services. GT3's security implementation uses Web services security mechanisms for credential exchange and other purposes, and introduces a tight least-privilege model that avoids the need for any privileged network service.Comment: 10 pages; 4 figure

    Securing data transfer in the cloud through introducing identification packet and UDT-authentication option field: a characterization

    Full text link
    The emergence of various technologies has since pushed researchers to develop new protocols that support high density data transmissions in Wide Area Networks. Many of these protocols are TCP protocol variants, which have demonstrated better performance in simulation and several limited network experiments but have limited practical applications because of implementation and installation difficulties. On the other hand, users who need to transfer bulk data (e.g., in grid/cloud computing) usually turn to application level solutions where these variants do not fair well. Among protocols considered in the application level solutions are UDP-based protocols, such as UDT (UDP-based Data Transport Protocol) for cloud /grid computing. Despite the promising development of protocols like UDT, what remains to be a major challenge that current and future network designers face is to achieve survivability and security of data and networks. Our previous research surveyed various security methodologies which led to the development of a framework for UDT. In this paper we present lowerlevel security by introducing an Identity Packet (IP) and Authentication Option (AO) for UDT.Comment: 17 page

    Unicast UDP Usage Guidelines for Application Designers

    Get PDF
    Publisher PD

    Integrated windows authentication in web applications

    Get PDF
    The paper discusses a method of transparent user authentication within a web application running in an internal network organized into a domain by means of Microsoft Active Directory

    Integrated windows authentication in web applications

    Get PDF
    The paper discusses a method of transparent user authentication within a web application running in an internal network organized into a domain by means of Microsoft Active Directory

    Survey of Security in Grid Services

    Get PDF
    This article provides a survey of Security in Grid Services coming from a study of many papers most of which were done by the Grid Forum OGSA-SEC (Open Grid Service Architecture Security) working group, GSI (Grid Security Infrastructure) working group, and Globus Alliance team and other people who contributed to Grid. It describes the best practice in terms of Grid Security Challenges, Grid Security Requirements, and the GT3 (Globus Toolkit version 3) Security Model for OGSA. Most of these were further refined in separate documents
    corecore