296 research outputs found

    Programming patterns and development guidelines for Semantic Sensor Grids (SemSorGrid4Env)

    No full text
    The web of Linked Data holds great potential for the creation of semantic applications that can combine self-describing structured data from many sources including sensor networks. Such applications build upon the success of an earlier generation of 'rapidly developed' applications that utilised RESTful APIs. This deliverable details experience, best practice, and design patterns for developing high-level web-based APIs in support of semantic web applications and mashups for sensor grids. Its main contributions are a proposal for combining Linked Data with RESTful application development summarised through a set of design principles; and the application of these design principles to Semantic Sensor Grids through the development of a High-Level API for Observations. These are supported by implementations of the High-Level API for Observations in software, and example semantic mashups that utilise the API

    Conceptual development of custom, domain-specific mashup platforms

    Get PDF
    Despite the common claim by mashup platforms that they enable end-users to develop their own software, in practice end-users still don't develop their own mashups, as the highly technical or inexistent user bases of today's mashup platforms testify. The key shortcoming of current platforms is their general-purpose nature, that privileges expressive power over intuitiveness. In our prior work, we have demonstrated that a domainspecific mashup approach, which privileges intuitiveness over expressive power, has much more potential to enable end-user development (EUD). The problem is that developing mashup platforms - domain-specific or not - is complex and time consuming. In addition, domain-specific mashup platforms by their very nature target only a small user basis, that is, the experts of the target domain, which makes their development not sustainable if it is not adequately supported and automated. With this article, we aim to make the development of custom, domain-specific mashup platforms costeffective. We describe a mashup tool development kit (MDK) that is able to automatically generate a mashup platform (comprising custom mashup and component description languages and design-time and runtime environments) from a conceptual design and to provision it as a service. We equip the kit with a dedicated development methodology and demonstrate the applicability and viability of the approach with the help of two case studies. © 2014 ACM

    Specification of high-level application programming interfaces (SemSorGrid4Env)

    No full text
    This document defines an Application Tier for the SemsorGrid4Env project. Within the Application Tier we distinguish between Web Applications - which provide a User Interface atop a more traditional Service Oriented Architecture - and Mashups which are driven by a REST API and a Resource Oriented Architecture. A pragmatic boundary is set to enable initial development of Web Applications and Mashups; as the project progresses an evaluation and comparison of the two paradigms may lead to a reassessment of where each can be applied within the project, with the experience gained providing a basis for general guidelines and best practice. Both Web Applications and Mashups are designed and delivered through an iterative user-centric process; requirements generated by the project case studies are a key element of this approach

    A look at cloud architecture interoperability through standards

    Get PDF
    Enabling cloud infrastructures to evolve into a transparent platform while preserving integrity raises interoperability issues. How components are connected needs to be addressed. Interoperability requires standard data models and communication encoding technologies compatible with the existing Internet infrastructure. To reduce vendor lock-in situations, cloud computing must implement universal strategies regarding standards, interoperability and portability. Open standards are of critical importance and need to be embedded into interoperability solutions. Interoperability is determined at the data level as well as the service level. Corresponding modelling standards and integration solutions shall be analysed

    Service composition for end-users

    Get PDF
    RESTful services are becoming a popular technology for providing and consuming cloud services. The idea of cloud computing is based on on-demand services and their agile usage. This implies that also personal service compositions and workflows should be supported. Some approaches for RESTful service compositions have been proposed. In practice, such compositions typically present mashup applications, which are composed in an ad-hoc manner. In addition, such approaches and tools are mainly targeted for programmers rather than end-users. In this paper, a user-driven approach for reusable RESTful service compositions is presented. Such compositions can be executed once or they can be configured to be executed repeatedly, for example, to get newest updates from a service once a week

    Web service composition: A survey of techniques and tools

    Get PDF
    Web services are a consolidated reality of the modern Web with tremendous, increasing impact on everyday computing tasks. They turned the Web into the largest, most accepted, and most vivid distributed computing platform ever. Yet, the use and integration of Web services into composite services or applications, which is a highly sensible and conceptually non-trivial task, is still not unleashing its full magnitude of power. A consolidated analysis framework that advances the fundamental understanding of Web service composition building blocks in terms of concepts, models, languages, productivity support techniques, and tools is required. This framework is necessary to enable effective exploration, understanding, assessing, comparing, and selecting service composition models, languages, techniques, platforms, and tools. This article establishes such a framework and reviews the state of the art in service composition from an unprecedented, holistic perspective

    Implementation and Deployment of a Library of the High-level Application Programming Interfaces (SemSorGrid4Env)

    No full text
    The high-level API service is designed to support rapid development of thin web applications and mashups beyond the state of the art in GIS, while maintaining compatibility with existing tools and expectations. It provides a fully configurable API, while maintaining a separation of concerns between domain experts, service administrators and mashup developers. It adheres to REST and Linked Data principles, and provides a novel bridge between standards-based (OGC O&M) and Semantic Web approaches. This document discusses the background motivations for the HLAPI (including experiences gained from any previously implemented versions), before moving onto specific details of the final implementation, including configuration and deployment instructions, as well as a full tutorial to assist mashup developers with using the exposed observation data

    End-user composition of interactive applications through actionable UI components

    Get PDF
    Developing interactive systems to access and manipulate data is a very tough task. In particular, the development of user interfaces (UIs) is one of the most time-consuming activities in the software lifecycle. This is even more demanding when data have to be retrieved by accessing flexibly different online resources. Indeed, software development is moving more and more toward composite applications that aggregate on the fly specific Web services and APIs. In this article, we present a mashup model that describes the integration, at the presentation layer, of UI components. The goal is to allow non-technical end users to visualize and manipulate (i.e., to perform actions on) the data displayed by the components, which thus become actionable UI components. This article shows how the model has guided the development of a mashup platform through which non-technical end users can create component-based interactive workspaces via the aggregation and manipulation of data fetched from distributed online resources. Due to the abundance of online data sources, facilitating the creation of such interactive workspaces is a very relevant need that emerges in different contexts. A utilization study has been performed in order to assess the benefits of the proposed model and of the Actionable UI Components; participants were required to perform real tasks using the mashup platform. The study results are reported and discussed
    • 

    corecore