108 research outputs found

    Linear Time Logics - A Coalgebraic Perspective

    Full text link
    We describe a general approach to deriving linear time logics for a wide variety of state-based, quantitative systems, by modelling the latter as coalgebras whose type incorporates both branching behaviour and linear behaviour. Concretely, we define logics whose syntax is determined by the choice of linear behaviour and whose domain of truth values is determined by the choice of branching, and we provide two equivalent semantics for them: a step-wise semantics amenable to automata-based verification, and a path-based semantics akin to those of standard linear time logics. We also provide a semantic characterisation of the associated notion of logical equivalence, and relate it to previously-defined maximal trace semantics for such systems. Instances of our logics support reasoning about the possibility, likelihood or minimal cost of exhibiting a given linear time property. We conclude with a generalisation of the logics, dual in spirit to logics with discounting, which increases their practical appeal in the context of resource-aware computation by incorporating a notion of offsetting.Comment: Major revision of previous version: Sections 4 and 5 generalise the results in the previous version, with new proofs; Section 6 contains new result

    Graded Monads and Graded Logics for the Linear Time - Branching Time Spectrum

    Get PDF
    State-based models of concurrent systems are traditionally considered under a variety of notions of process equivalence. In the case of labelled transition systems, these equivalences range from trace equivalence to (strong) bisimilarity, and are organized in what is known as the linear time - branching time spectrum. A combination of universal coalgebra and graded monads provides a generic framework in which the semantics of concurrency can be parametrized both over the branching type of the underlying transition systems and over the granularity of process equivalence. We show in the present paper that this framework of graded semantics does subsume the most important equivalences from the linear time - branching time spectrum. An important feature of graded semantics is that it allows for the principled extraction of characteristic modal logics. We have established invariance of these graded logics under the given graded semantics in earlier work; in the present paper, we extend the logical framework with an explicit propositional layer and provide a generic expressiveness criterion that generalizes the classical Hennessy-Milner theorem to coarser notions of process equivalence. We extract graded logics for a range of graded semantics on labelled transition systems and probabilistic systems, and give exemplary proofs of their expressiveness based on our generic criterion

    Coalgebraic Trace Semantics for Continuous Probabilistic Transition Systems

    Full text link
    Coalgebras in a Kleisli category yield a generic definition of trace semantics for various types of labelled transition systems. In this paper we apply this generic theory to generative probabilistic transition systems, short PTS, with arbitrary (possibly uncountable) state spaces. We consider the sub-probability monad and the probability monad (Giry monad) on the category of measurable spaces and measurable functions. Our main contribution is that the existence of a final coalgebra in the Kleisli category of these monads is closely connected to the measure-theoretic extension theorem for sigma-finite pre-measures. In fact, we obtain a practical definition of the trace measure for both finite and infinite traces of PTS that subsumes a well-known result for discrete probabilistic transition systems. Finally we consider two example systems with uncountable state spaces and apply our theory to calculate their trace measures

    Exptime tableaux for the coalgebraic μ-calculus

    Get PDF
    The coalgebraic approach to modal logic provides a uniform framework that captures the semantics of a large class of structurally different modal logics, including e.g. graded and probabilistic modal logics and coalition logic. In this paper, we introduc

    Generic Trace Semantics and Graded Monads

    Get PDF
    Models of concurrent systems employ a wide variety of semantics inducing various notions of process equivalence, ranging from linear-time semantics such as trace equivalence to branching-time semantics such as strong bisimilarity. Many of these generalize to system types beyond standard transition systems, featuring, for example, weighted, probabilistic, or game-based transitions; this motivates the search for suitable coalgebraic abstractions of process equivalence that cover these orthogonal dimensions of generality, i.e. are generic both in the system type and in the notion of system equivalence. In recent joint work with Kurz, we have proposed a parametrization of system equivalence over an embedding of the coalgebraic type functor into a monad. In the present paper, we refine this abstraction to use graded monads, which come with a notion of depth that corresponds, e.g., to trace length or bisimulation depth. We introduce a notion of graded algebras and show how they play the role of formulas in trace logics

    Coalgebraic Trace Semantics for Buechi and Parity Automata

    Get PDF
    Despite its success in producing numerous general results on state-based dynamics, the theory of coalgebra has struggled to accommodate the Buechi acceptance condition---a basic notion in the theory of automata for infinite words or trees. In this paper we present a clean answer to the question that builds on the "maximality" characterization of infinite traces (by Jacobs and Cirstea): the accepted language of a Buechi automaton is characterized by two commuting diagrams, one for a least homomorphism and the other for a greatest, much like in a system of (least and greatest) fixed-point equations. This characterization works uniformly for the nondeterministic branching and the probabilistic one; and for words and trees alike. We present our results in terms of the parity acceptance condition that generalizes Buechi\u27s

    Coalgebraic Infinite Traces and Kleisli Simulations

    Full text link
    Kleisli simulation is a categorical notion introduced by Hasuo to verify finite trace inclusion. They allow us to give definitions of forward and backward simulation for various types of systems. A generic categorical theory behind Kleisli simulation has been developed and it guarantees the soundness of those simulations with respect to finite trace semantics. Moreover, those simulations can be aided by forward partial execution (FPE)---a categorical transformation of systems previously introduced by the authors. In this paper, we give Kleisli simulation a theoretical foundation that assures its soundness also with respect to infinitary traces. There, following Jacobs' work, infinitary trace semantics is characterized as the "largest homomorphism." It turns out that soundness of forward simulations is rather straightforward; that of backward simulation holds too, although it requires certain additional conditions and its proof is more involved. We also show that FPE can be successfully employed in the infinitary trace setting to enhance the applicability of Kleisli simulations as witnesses of trace inclusion. Our framework is parameterized in the monad for branching as well as in the functor for linear-time behaviors; for the former we mainly use the powerset monad (for nondeterminism), the sub-Giry monad (for probability), and the lift monad (for exception).Comment: 39 pages, 1 figur
    • …
    corecore