7 research outputs found

    Coalgebraic Trace Semantics for Buechi and Parity Automata

    Get PDF
    Despite its success in producing numerous general results on state-based dynamics, the theory of coalgebra has struggled to accommodate the Buechi acceptance condition---a basic notion in the theory of automata for infinite words or trees. In this paper we present a clean answer to the question that builds on the "maximality" characterization of infinite traces (by Jacobs and Cirstea): the accepted language of a Buechi automaton is characterized by two commuting diagrams, one for a least homomorphism and the other for a greatest, much like in a system of (least and greatest) fixed-point equations. This characterization works uniformly for the nondeterministic branching and the probabilistic one; and for words and trees alike. We present our results in terms of the parity acceptance condition that generalizes Buechi\u27s

    Coalgebraic Infinite Traces and Kleisli Simulations

    Get PDF
    Kleisli simulation is a categorical notion introduced by Hasuo to verify finite trace inclusion. They allow us to give definitions of forward and backward simulation for various types of systems. A generic categorical theory behind Kleisli simulation has been developed and it guarantees the soundness of those simulations wrt. finite trace semantics. Moreover, those simulations can be aided by forward partial execution (FPE) - a categorical transformation of systems previously introduced by the authors. In this paper, we give Kleisli simulation a theoretical foundation that assures its soundness also wrt. infinite trace. There, following Jacobs\u27 work, infinite trace semantics is characterized as the "largest homomorphism." It turns out that soundness of forward simulations is rather straightforward; that of backward simulation holds too, although it requires certain additional conditions and its proof is more involved. We also show that FPE can be successfully employed in the infinite trace setting to enhance the applicability of Kleisli simulations as witnesses of trace inclusion. Our framework is parameterized in the monad for branching as well as in the functor for linear-time behaviors; for the former we use the powerset monad (for nondeterminism) as well as the sub-Giry monad (for probability)

    Coalgebraic Trace Semantics for Continuous Probabilistic Transition Systems

    Full text link
    Coalgebras in a Kleisli category yield a generic definition of trace semantics for various types of labelled transition systems. In this paper we apply this generic theory to generative probabilistic transition systems, short PTS, with arbitrary (possibly uncountable) state spaces. We consider the sub-probability monad and the probability monad (Giry monad) on the category of measurable spaces and measurable functions. Our main contribution is that the existence of a final coalgebra in the Kleisli category of these monads is closely connected to the measure-theoretic extension theorem for sigma-finite pre-measures. In fact, we obtain a practical definition of the trace measure for both finite and infinite traces of PTS that subsumes a well-known result for discrete probabilistic transition systems. Finally we consider two example systems with uncountable state spaces and apply our theory to calculate their trace measures

    Coalgebraic Infinite Traces and Kleisli Simulations

    Full text link
    Kleisli simulation is a categorical notion introduced by Hasuo to verify finite trace inclusion. They allow us to give definitions of forward and backward simulation for various types of systems. A generic categorical theory behind Kleisli simulation has been developed and it guarantees the soundness of those simulations with respect to finite trace semantics. Moreover, those simulations can be aided by forward partial execution (FPE)---a categorical transformation of systems previously introduced by the authors. In this paper, we give Kleisli simulation a theoretical foundation that assures its soundness also with respect to infinitary traces. There, following Jacobs' work, infinitary trace semantics is characterized as the "largest homomorphism." It turns out that soundness of forward simulations is rather straightforward; that of backward simulation holds too, although it requires certain additional conditions and its proof is more involved. We also show that FPE can be successfully employed in the infinitary trace setting to enhance the applicability of Kleisli simulations as witnesses of trace inclusion. Our framework is parameterized in the monad for branching as well as in the functor for linear-time behaviors; for the former we mainly use the powerset monad (for nondeterminism), the sub-Giry monad (for probability), and the lift monad (for exception).Comment: 39 pages, 1 figur

    Generic Infinite Traces and Path-Based Coalgebraic Temporal Logics

    No full text
    This paper gives a general coalgebraic account of the notions of possibly infinite trace and possibly infinite execution in state-based, dynamical systems, by extending the generic theory of finite traces and executions developed by Hasuo and coauthors [8]. The systems we consider are modelled as coalgebras of endofunctors obtained as the composition of a computational type (e.g. nondeterministic or stochastic) with a general transition type. This generalises existing work by Jacobs [10] that only accounts for a nondeterministic computational type. We subsequently introduce path-based temporal (including fixpoint) logics for coalgebras of such endofunctors, whose semantics is based upon the notion of possibly infinite execution. Our approach instantiates to both nondeterministic and stochastic computations, yielding, in particular, path-based fixpoint logics in the style of CTL* for nondeterministic systems, as well as generalisations of the logic PCTL for probabilistic systems

    Fair Simulation for Nondeterministic and Probabilistic Buechi Automata: a Coalgebraic Perspective

    Full text link
    Notions of simulation, among other uses, provide a computationally tractable and sound (but not necessarily complete) proof method for language inclusion. They have been comprehensively studied by Lynch and Vaandrager for nondeterministic and timed systems; for B\"{u}chi automata the notion of fair simulation has been introduced by Henzinger, Kupferman and Rajamani. We contribute to a generalization of fair simulation in two different directions: one for nondeterministic tree automata previously studied by Bomhard; and the other for probabilistic word automata with finite state spaces, both under the B\"{u}chi acceptance condition. The former nondeterministic definition is formulated in terms of systems of fixed-point equations, hence is readily translated to parity games and is then amenable to Jurdzi\'{n}ski's algorithm; the latter probabilistic definition bears a strong ranking-function flavor. These two different-looking definitions are derived from one source, namely our coalgebraic modeling of B\"{u}chi automata. Based on these coalgebraic observations, we also prove their soundness: a simulation indeed witnesses language inclusion
    corecore