10 research outputs found

    Expediting TTS Synthesis with Adversarial Vocoding

    Get PDF
    Recent approaches in text-to-speech (TTS) synthesis employ neural network strategies to vocode perceptually-informed spectrogram representations directly into listenable waveforms. Such vocoding procedures create a computational bottleneck in modern TTS pipelines. We propose an alternative approach which utilizes generative adversarial networks (GANs) to learn mappings from perceptually-informed spectrograms to simple magnitude spectrograms which can be heuristically vocoded. Through a user study, we show that our approach significantly outperforms na\"ive vocoding strategies while being hundreds of times faster than neural network vocoders used in state-of-the-art TTS systems. We also show that our method can be used to achieve state-of-the-art results in unsupervised synthesis of individual words of speech.Comment: Published as a conference paper at INTERSPEECH 201

    Simulating dysarthric speech for training data augmentation in clinical speech applications

    Full text link
    Training machine learning algorithms for speech applications requires large, labeled training data sets. This is problematic for clinical applications where obtaining such data is prohibitively expensive because of privacy concerns or lack of access. As a result, clinical speech applications are typically developed using small data sets with only tens of speakers. In this paper, we propose a method for simulating training data for clinical applications by transforming healthy speech to dysarthric speech using adversarial training. We evaluate the efficacy of our approach using both objective and subjective criteria. We present the transformed samples to five experienced speech-language pathologists (SLPs) and ask them to identify the samples as healthy or dysarthric. The results reveal that the SLPs identify the transformed speech as dysarthric 65% of the time. In a pilot classification experiment, we show that by using the simulated speech samples to balance an existing dataset, the classification accuracy improves by about 10% after data augmentation.Comment: Will appear in Proc. of ICASSP 201
    corecore