961 research outputs found

    Heartbeat Anomaly Detection using Adversarial Oversampling

    Full text link
    Cardiovascular diseases are one of the most common causes of death in the world. Prevention, knowledge of previous cases in the family, and early detection is the best strategy to reduce this fact. Different machine learning approaches to automatic diagnostic are being proposed to this task. As in most health problems, the imbalance between examples and classes is predominant in this problem and affects the performance of the automated solution. In this paper, we address the classification of heartbeats images in different cardiovascular diseases. We propose a two-dimensional Convolutional Neural Network for classification after using a InfoGAN architecture for generating synthetic images to unbalanced classes. We call this proposal Adversarial Oversampling and compare it with the classical oversampling methods as SMOTE, ADASYN, and RandomOversampling. The results show that the proposed approach improves the classifier performance for the minority classes without harming the performance in the balanced classes

    Autoencoders and Generative Adversarial Networks for Imbalanced Sequence Classification

    Full text link
    Generative Adversarial Networks (GANs) have been used in many different applications to generate realistic synthetic data. We introduce a novel GAN with Autoencoder (GAN-AE) architecture to generate synthetic samples for variable length, multi-feature sequence datasets. In this model, we develop a GAN architecture with an additional autoencoder component, where recurrent neural networks (RNNs) are used for each component of the model in order to generate synthetic data to improve classification accuracy for a highly imbalanced medical device dataset. In addition to the medical device dataset, we also evaluate the GAN-AE performance on two additional datasets and demonstrate the application of GAN-AE to a sequence-to-sequence task where both synthetic sequence inputs and sequence outputs must be generated. To evaluate the quality of the synthetic data, we train encoder-decoder models both with and without the synthetic data and compare the classification model performance. We show that a model trained with GAN-AE generated synthetic data outperforms models trained with synthetic data generated both with standard oversampling techniques such as SMOTE and Autoencoders as well as with state of the art GAN-based models

    DOPING: Generative Data Augmentation for Unsupervised Anomaly Detection with GAN

    Full text link
    Recently, the introduction of the generative adversarial network (GAN) and its variants has enabled the generation of realistic synthetic samples, which has been used for enlarging training sets. Previous work primarily focused on data augmentation for semi-supervised and supervised tasks. In this paper, we instead focus on unsupervised anomaly detection and propose a novel generative data augmentation framework optimized for this task. In particular, we propose to oversample infrequent normal samples - normal samples that occur with small probability, e.g., rare normal events. We show that these samples are responsible for false positives in anomaly detection. However, oversampling of infrequent normal samples is challenging for real-world high-dimensional data with multimodal distributions. To address this challenge, we propose to use a GAN variant known as the adversarial autoencoder (AAE) to transform the high-dimensional multimodal data distributions into low-dimensional unimodal latent distributions with well-defined tail probability. Then, we systematically oversample at the `edge' of the latent distributions to increase the density of infrequent normal samples. We show that our oversampling pipeline is a unified one: it is generally applicable to datasets with different complex data distributions. To the best of our knowledge, our method is the first data augmentation technique focused on improving performance in unsupervised anomaly detection. We validate our method by demonstrating consistent improvements across several real-world datasets.Comment: Published as a conference paper at ICDM 2018 (IEEE International Conference on Data Mining

    A novel generative adversarial networks modelling for the class imbalance problem in high dimensional omics data

    Get PDF
    Class imbalance remains a large problem in high-throughput omics analyses, causing bias towards the over-represented class when training machine learning-based classifiers. Oversampling is a common method used to balance classes, allowing for better generalization of the training data. More naive approaches can introduce other biases into the data, being especially sensitive to inaccuracies in the training data, a problem considering the characteristically noisy data obtained in healthcare. This is especially a problem with high-dimensional data. A generative adversarial network-based method is proposed for creating synthetic samples from small, high-dimensional data, to improve upon other more naive generative approaches. The method was compared with ‘synthetic minority over-sampling technique’ (SMOTE) and ‘random oversampling’ (RO). Generative methods were validated by training classifiers on the balanced data

    Generative Adversarial Networks Selection Approach for Extremely Imbalanced Fault Diagnosis of Reciprocating Machinery

    Get PDF
    At present, countless approaches to fault diagnosis in reciprocating machines have been proposed, all considering that the available machinery dataset is in equal proportions for all conditions. However, when the application is closer to reality, the problem of data imbalance is increasingly evident. In this paper, we propose a method for the creation of diagnoses that consider an extreme imbalance in the available data. Our approach first processes the vibration signals of the machine using a wavelet packet transform-based feature-extraction stage. Then, improved generative models are obtained with a dissimilarity-based model selection to artificially balance the dataset. Finally, a Random Forest classifier is created to address the diagnostic task. This methodology provides a considerable improvement with 99% of data imbalance over other approaches reported in the literature, showing performance similar to that obtained with a balanced set of data.National Natural Science Foundation of China, under Grant 51605406National Natural Science Foundation of China under Grant 7180104

    Minority Class Oversampling for Tabular Data with Deep Generative Models

    Full text link
    In practice, machine learning experts are often confronted with imbalanced data. Without accounting for the imbalance, common classifiers perform poorly and standard evaluation metrics mislead the practitioners on the model's performance. A common method to treat imbalanced datasets is under- and oversampling. In this process, samples are either removed from the majority class or synthetic samples are added to the minority class. In this paper, we follow up on recent developments in deep learning. We take proposals of deep generative models, including our own, and study the ability of these approaches to provide realistic samples that improve performance on imbalanced classification tasks via oversampling. Across 160K+ experiments, we show that all of the new methods tend to perform better than simple baseline methods such as SMOTE, but require different under- and oversampling ratios to do so. Our experiments show that the way the method of sampling does not affect quality, but runtime varies widely. We also observe that the improvements in terms of performance metric, while shown to be significant when ranking the methods, often are minor in absolute terms, especially compared to the required effort. Furthermore, we notice that a large part of the improvement is due to undersampling, not oversampling. We make our code and testing framework available
    • …
    corecore