238 research outputs found

    Finding Hexahedrizations for Small Quadrangulations of the Sphere

    Full text link
    This paper tackles the challenging problem of constrained hexahedral meshing. An algorithm is introduced to build combinatorial hexahedral meshes whose boundary facets exactly match a given quadrangulation of the topological sphere. This algorithm is the first practical solution to the problem. It is able to compute small hexahedral meshes of quadrangulations for which the previously known best solutions could only be built by hand or contained thousands of hexahedra. These challenging quadrangulations include the boundaries of transition templates that are critical for the success of general hexahedral meshing algorithms. The algorithm proposed in this paper is dedicated to building combinatorial hexahedral meshes of small quadrangulations and ignores the geometrical problem. The key idea of the method is to exploit the equivalence between quad flips in the boundary and the insertion of hexahedra glued to this boundary. The tree of all sequences of flipping operations is explored, searching for a path that transforms the input quadrangulation Q into a new quadrangulation for which a hexahedral mesh is known. When a small hexahedral mesh exists, a sequence transforming Q into the boundary of a cube is found; otherwise, a set of pre-computed hexahedral meshes is used. A novel approach to deal with the large number of problem symmetries is proposed. Combined with an efficient backtracking search, it allows small shellable hexahedral meshes to be found for all even quadrangulations with up to 20 quadrangles. All 54,943 such quadrangulations were meshed using no more than 72 hexahedra. This algorithm is also used to find a construction to fill arbitrary domains, thereby proving that any ball-shaped domain bounded by n quadrangles can be meshed with no more than 78 n hexahedra. This very significantly lowers the previous upper bound of 5396 n.Comment: Accepted for SIGGRAPH 201

    Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes

    Get PDF
    A quadrangulation is a graph embedded on the sphere such that each face is bounded by a walk of length 4, parallel edges allowed. All quadrangulations can be generated by a sequence of graph operations called vertex splitting, starting from the path P_2 of length 2. We define the degree D of a splitting S and consider restricted splittings S_{i,j} with i <= D <= j. It is known that S_{2,3} generate all simple quadrangulations. Here we investigate the cases S_{1,2}, S_{1,3}, S_{1,1}, S_{2,2}, S_{3,3}. First we show that the splittings S_{1,2} are exactly the monotone ones in the sense that the resulting graph contains the original as a subgraph. Then we show that they define a set of nontrivial ancestors beyond P_2 and each quadrangulation has a unique ancestor. Our results have a direct geometric interpretation in the context of mechanical equilibria of convex bodies. The topology of the equilibria corresponds to a 2-coloured quadrangulation with independent set sizes s, u. The numbers s, u identify the primary equilibrium class associated with the body by V\'arkonyi and Domokos. We show that both S_{1,1} and S_{2,2} generate all primary classes from a finite set of ancestors which is closely related to their geometric results. If, beyond s and u, the full topology of the quadrangulation is considered, we arrive at the more refined secondary equilibrium classes. As Domokos, L\'angi and Szab\'o showed recently, one can create the geometric counterparts of unrestricted splittings to generate all secondary classes. Our results show that S_{1,2} can only generate a limited range of secondary classes from the same ancestor. The geometric interpretation of the additional ancestors defined by monotone splittings shows that minimal polyhedra play a key role in this process. We also present computational results on the number of secondary classes and multiquadrangulations.Comment: 21 pages, 11 figures and 3 table

    Enumeration of labelled 4-regular planar graphs

    Get PDF
    We present the first combinatorial scheme for counting labelled 4-regular planar graphs through a complete recursive decomposition. More precisely, we show that the exponential generating function of labelled 4-regular planar graphs can be computed effectively as the solution of a system of equations, from which the coefficients can be extracted. As a byproduct, we also enumerate labelled 3-connected 4-regular planar graphs, and simple 4-regular rooted maps

    Basic nets in the projective plane

    Full text link
    The notion of basic net (called also basic polyhedron) on S2S^2 plays a central role in Conway's approach to enumeration of knots and links in S3S^3. Drobotukhina applied this approach for links in RP3RP^3 using basic nets on RP2RP^2. By a result of Nakamoto, all basic nets on S2S^2 can be obtained from a very explicit family of minimal basic nets (the nets (2×n)(2\times n)^*, n3n\ge3, in Conway's notation) by two local transformations. We prove a similar result for basic nets in RP2RP^2. We prove also that a graph on RP2RP^2 is uniquely determined by its pull-back on S3S^3 (the proof is based on Lefschetz fix point theorem).Comment: 14 pages, 15 figure

    A topological classification of convex bodies

    Get PDF
    The shape of homogeneous, generic, smooth convex bodies as described by the Euclidean distance with nondegenerate critical points, measured from the center of mass represents a rather restricted class M_C of Morse-Smale functions on S^2. Here we show that even M_C exhibits the complexity known for general Morse-Smale functions on S^2 by exhausting all combinatorial possibilities: every 2-colored quadrangulation of the sphere is isomorphic to a suitably represented Morse-Smale complex associated with a function in M_C (and vice versa). We prove our claim by an inductive algorithm, starting from the path graph P_2 and generating convex bodies corresponding to quadrangulations with increasing number of vertices by performing each combinatorially possible vertex splitting by a convexity-preserving local manipulation of the surface. Since convex bodies carrying Morse-Smale complexes isomorphic to P_2 exist, this algorithm not only proves our claim but also generalizes the known classification scheme in [36]. Our expansion algorithm is essentially the dual procedure to the algorithm presented by Edelsbrunner et al. in [21], producing a hierarchy of increasingly coarse Morse-Smale complexes. We point out applications to pebble shapes.Comment: 25 pages, 10 figure

    Wiener Index and Remoteness in Triangulations and Quadrangulations

    Full text link
    Let GG be a a connected graph. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices. We provide asymptotic formulae for the maximum Wiener index of simple triangulations and quadrangulations with given connectivity, as the order increases, and make conjectures for the extremal triangulations and quadrangulations based on computational evidence. If σ(v)\overline{\sigma}(v) denotes the arithmetic mean of the distances from vv to all other vertices of GG, then the remoteness of GG is defined as the largest value of σ(v)\overline{\sigma}(v) over all vertices vv of GG. We give sharp upper bounds on the remoteness of simple triangulations and quadrangulations of given order and connectivity
    corecore