3 research outputs found

    ModelizaciĂłn y analisis del efecto de las arrĂ­tmias auriculares sobre la respuesta ventricular

    Full text link
    La principal motivación del presente proyecto es profundizar en el comportamiento del nodo AV, puesto que, a pesar de su importancia en la correcta actividad del corazón, siguen existiendo muchas incógnitas relacionadas con los mecanismos de funcionamiento del mismo. En concreto, los mecanismos de propagación aurículo-ventriculares durante arritmias auriculares, como la fibrilación auricular (FA), sigue siendo una de las mayores incógnitas que se pretende esclarecer en la actualidad mediante la elaboración, uso y Modelización y analisis del efecto de las arrítmias auriculares sobre la respuesta ventricular estudio de modelos matemáticos como el que se presenta en este proyecto. No cabe duda, de que disponer de un conocimiento detallado de las propiedades de conducción del nodo AV, permitiría desarrollar nuevos tratamientos más efectivos que pudiesen ser utilizados para reducir los síntomas del flúter y la fibrilación auricular.Escrivá Muñoz, J. (2012). Modelización y analisis del efecto de las arrítmias auriculares sobre la respuesta ventricular. http://hdl.handle.net/10251/19030.Archivo delegad

    Generation of realistic atrial to atrial interval series during atrial fibrillation

    Full text link
    The aim of the this study is to describe a methodological architecture for the generation of realistic atrial to atrial activation intervals (AA) during atrial fibrillation (AF), which can be used to investigate the role of the fibrillatory process in the ventricular response during AF. In this study, a methodology for the generation of AA interval series with a desired probability density function and autocorrelation function is presented. The methodology was evaluated on 2000 AA interval series from 20 endocardial recordings. The results showed that synthetic AA series presented the same statistical characteristics as the real AA series, with a correlation higher than 0.94 (P < 0.01) for all measured statistical parameters. In addition, the role of each statistical characteristic of the AA interval series in the ventricular response during AF is examined using a mathematical model of the atrioventricular node. The statistical characteristics of the AA series influenced the position of more probable RR intervals and the shape of the RR histogram, demonstrating the importance of an accurate characterization and generation of AA interval series during AF. The use of the present methodology may help in understanding the role of the atrial fibrillatory process in the ventricular response during AF.This research was supported by Spanish Ministry of Education and Science under TEC2009-13939; the Universitat Politecnica de Valencia through its research initiative program; and the Spanish Society of Cardiology.Climent, AM.; Atienza, F.; Millet Roig, J.; Guillem Sánchez, MS. (2011). Generation of realistic atrial to atrial interval series during atrial fibrillation. Medical and Biological Engineering and Computing. 49(11):1261-1268. doi:10.1007/s11517-011-0823-2S126112684911Chen S, Nie H, Ayers-Glassey B (2008) Lognormal sum approximation with a variant of type IV Pearson distribution. IEEE Commun Lett 12:630–632Chorro FJ, Kirchhof CJHJ, Brugada J, Allessie MA (1990) Ventricular response during irregular atrial-pacing and atrial-fibrillation. Am J Physiol Heart Circ Physiol 259:H1015–H1021Chorro FJ, Sanchis J, Lopez-Merino V, Such L, Avellana JA, Valentin V (1991) Effects of atrial impulse timing on AV concealed conduction in the rabbit heart. Pacing Clin Electrophysiol 14(5 Pt 1):842–853Climent AM, Guillem MS, Husser D, Castells F, Millet J, Bollmann A (2009) Poincare surface profiles of RR intervals. A novel noninvasive method for the evaluation of preferential AV nodal conduction during atrial fibrillation. IEEE Trans Biomed Eng 56(2):433–442Climent AM, Guillem MS, Husser D, Castells F, Millet J, Bollmann A (2010) Role of the atrial rate as a factor modulating ventricular response during atrial fibrillation. Pacing Clin Electrophysiol 33:1510–1517Climent AM, Guillem MS, Zhang Y, Millet J, Mazgalev T (2011) Functional mathematical model of dual pathway AV nodal conductions. Am J Physiol Heart Circ Physiol 300(4):H1393–H1401Cohen RJ, Berger RD (1983) A quantitative model for the ventricular response during atrial-fibrillation. IEEE Trans Biomed Eng 30:769–781Cover TM, Thomas JA (2006) Elements of information theory. Wiley, New YorkDevroye L (1989) On random variate generation when only moments or Fourier coefficients are known. Math Comput Simul 31:71–89Faes L, Nollo G, Antolini R, Gaita F, Ravelli F (2002) A method for quantifying atrial fibrillation organization based on wave-morphology similarity. IEEE Trans Biomed Eng 49:1504–1513Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, Halperin JL, Le Heuzey JY, Kay GN, Lowe JE, Olsson SB, Prystowsky EN, Tamargo JL, Wann S (2006) ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation. Europace 8:651–745Garrigue S, Mowrey KA, Fahy G, Tchou PJ, Mazgalev TN (1999) Atrioventricular nodal conduction during atrial fibrillation: role of atrial input modification. Circulation 99:2323–2333Garrigue S, Tchou PJ, Mazgalev TN (1999) Role of the differential bombardment of atrial inputs to the atrioventricular node as a factor influencing ventricular rate during high atrial rate. Cardiovasc Res 44:344–355Gerstenfeld EP, Sahakian AV, Swiryn S (1992) Evidence for transient linking of atrial excitation during atrial fibrillation in humans. Circulation 86:375–382Heethaar RM, Denier van der Gon JJ, Meijler FL (1973) Mathematical model of A-V conduction in the rat heart. Cardiovasc Res 7:105–114Heethaar RM, van der Gon JJ, Meijler FL (1973) Interpretation of some properties of A-V conduction with the help of analog simulation. Eur J Cardiol 1:87–93Heinrich J (2004) A guide to the Pearson type IV distribution. http://www-cdf.fnal.govInada S, Hancox JC, Zhang H, Boyett MR (2009) One-dimensional mathematical model of the atrioventricular node including atrio-nodal, nodal, and nodal-his cells. Biophys J 97:2117–2127Izrailev FM, Krokhin AA, Makarov NM, Usatenko OV (2007) Generation of correlated binary sequences from white noise. Phys Rev E 76:1–4Jorgensen P, Schafer C, Guerra PG, Talajic M, Nattel S, Glass L (2002) A mathematical model of human atrioventricular nodal function incorporating concealed conduction. Bull Math Biol 64:1083–1099Kwan R, Leung C (2007) On the applicability of the Pearson method for approximating distributions in wireless communications. IEEE Trans Commun 55:2065–2069Lian J, Mussig D, Lang V (2006) Computer modeling of ventricular rhythm during atrial fibrillation and ventricular pacing. IEEE Trans Biomed Eng 53:1512–1520Makse HA, Havlin S, Schwartz M, Stanley HE (1996) Method for generating long-range correlations for large systems. Phys Rev E 53:5445–5449Mangin L, Vinet A, Page P, Glass L (2005) Effects of antiarrhythmic drug therapy on atrioventricular nodal function during atrial fibrillation in humans. Europace 7(Suppl 2):71–82Mazgalev TN, Garrigue S, Mowrey KA, Yamanouchi Y, Tchou PJ (1999) Autonomic modification of the atrioventricular node during atrial fibrillation: role in the slowing of ventricular rate. Circulation 99:2806–2814Meijler FL, Jalife J, Beaumont J, Vaidya D (1996) AV nodal function during atrial fibrillation: the role of electrotonic modulation of propagation. J Cardiovasc Electrophysiol 7:843–861Meurling CJ, Waktare JE, Holmqvist F, Hedman A, Camm AJ, Olsson SB, Malik M (2001) Diurnal variations of the dominant cycle length of chronic atrial fibrillation. Am J Physiol Heart Circ Physiol 280:H401–H406Nagahara Y (2004) A method of simulating multivariate nonnormal distributions by the Pearson distribution system and estimation. Comput Stat Data Anal 47:1–29Nie H, Chen SH (2007) Lognormal sum approximation with type IV Pearson distribution. IEEE Commun Lett 11:790–792Pearson K (1895) Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. Philos Trans R Soc Lond A 186:343–414Richter U, Bollmann A, Husser D, Stridh M (2009) Right atrial organization and wavefront analysis in atrial fibrillation. Med Biol Eng Comput 47:1237–1246Sandberg F, Bollmann A, Husser D, Stridh M, Sornmo L (2010) Circadian variation in dominant atrial fibrillation frequency in persistent atrial fibrillation. Physiol Meas 31:531–542Schoenwald AT, Sahakian AV, Sih HJ, Swiryn S (1998) Further observations of “linking” of atrial excitation during clinical atrial fibrillation. Pacing Clin Electrophysiol 21:25–34Tadros R, Billette J (2009) Rate-dependent AV nodal refractoriness: a new functional framework based on concurrent effects of basic and pretest cycle length. Am J Physiol Heart Circ Physiol 297:H2136–H2143Tadros R, Lavallee M, Billette J (2006) Unified rate-dependent atrioventricular nodal function: consistent recovery and fatigue properties revealed with S1S2S3 protocols and different recovery indexes. Heart Rhythm 3:959–966Tadros R, Lavallee M, Billette J (2007) Dependence of AV nodal function curves on the selected recovery index: pivotal role of pretest conduction time. J Cardiovasc Electrophysiol 18:978–984Talajic M, Papadatos D, Villemaire C, Glass L, Nattel S (1991) A unified model of atrioventricular nodal conduction predicts dynamic changes in Wenckebach periodicity. Circ Res 68:1280–1293Vaya C, Rieta JJ (2009) Time and frequency series combination for non-invasive regularity analysis of atrial fibrillation. Med Biol Eng Comput 47:687–696Zeng W, Glass L (1996) Statistical properties of heartbeat intervals during atrial fibrillation. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 54:1779–1784Zhang YH, Mazgalev TN (2004) Ventricular rate control during atrial fibrillation and AV node modifications: past, present, and future. Pacing Clin Electrophysiol 27:382–393Zhang QT, Song SH (2008) A systematic procedure for accurately approximating lognormal-sum distributions. IEEE Trans Veh Technol 57:663–66
    corecore