16,746 research outputs found

    A survey of non-prehensible pneumatic manipulation surfaces : principles, models and control.

    No full text
    International audienceMany manipulation systems using air flow have been proposed for object handling in a non-prehensile way and without solid-to-solid contact. Potential applications include high-speed transport of fragile and clean products and high-resolution positioning of thin delicate objects. This paper discusses a comprehensive survey of state-of-the-art pneumatic manipulation from the macro scale to the micro scale. The working principles and actuation methods of previously developed air-bearing surfaces, ultra-sonic bearing surfaces, air-flow manipulators, air-film manipulators, and tilted air-jet manipulators are reviewed with a particular emphasis on the modeling and the control issues. The performance of the previously developed devices are compared quantitatively and open problems in pneumatic manipulation are discussed

    2-DOF Contactless Distributed Manipulation Using Superposition of Induced Air Flows.

    No full text
    International audienceMany industries require contactless transport and positioning of delicate or clean objects such as silicon wafers, glass sheets, solar cell or flat foodstuffs. The authors have presented a new form of contactless distributed manipulation using induced air flow. Previous works concerned the evaluation of the maximal velocity of transported objects and one degreeof- freedom position control of objects. This paper introduces an analytic model of the velocity field of the induced air flow according to the spatial configuration of vertical air jets. Then two degrees-of-freedom position control is investigated by exploiting the linearity property of the model. Finally the model is validated under closed-loop control and the performances of the position control are evaluated

    A new Aerodynamic traction principle for handling products on an Air Cushion.

    No full text
    International audienceThis paper introduces a new aerodynamic traction principle for handling delicate and clean products, such as silicon wafers, glass sheets or flat foodstuff. The product is carried on a thin air cushion and transported along the system by induced air flows. This induced air flow is the indirect effect of strong vertical air-jets that pull the surrounding fluid. The paper provides a qualitative explanation of the operating principles and a description of the experimental device. Very first experimental results with active control are presented. The maximum velocity and acceleration that can be obtained for the considered device geometry meet the requirements for industrial applications

    Shaken not stirred — On internal flow patterns in oscillating sessile drops

    Get PDF
    We use numerical (volume of fluid) simulations to study the flow in an oscillating sessile drop immersed in an ambient immiscible fluid. The drop is excited by a sinusoidal variation of the contact angle at variable frequency. We identify the eigenfrequencies and eigenmodes of the drops and analyze the internal flow fields by following the trajectories of tracer particles. The flow fields display an oscillatory component as well as a time-averaged mean component. The latter is oriented upward along the surface of the drop from the contact line towards the apex and downward along the symmetry axis. It vanishes at high and low frequencies and displays a broad maximum around f =200–300Hz. We show that the frequency dependence of the mean flow can be described in terms of Stokes drift driven by capillary waves that originate from the contact line, in agreement with recent experiments
    • …
    corecore