500 research outputs found

    Chaos at the border of criticality

    Full text link
    The present paper points out to a novel scenario for formation of chaotic attractors in a class of models of excitable cell membranes near an Andronov-Hopf bifurcation (AHB). The mechanism underlying chaotic dynamics admits a simple and visual description in terms of the families of one-dimensional first-return maps, which are constructed using the combination of asymptotic and numerical techniques. The bifurcation structure of the continuous system (specifically, the proximity to a degenerate AHB) endows the Poincare map with distinct qualitative features such as unimodality and the presence of the boundary layer, where the map is strongly expanding. This structure of the map in turn explains the bifurcation scenarios in the continuous system including chaotic mixed-mode oscillations near the border between the regions of sub- and supercritical AHB. The proposed mechanism yields the statistical properties of the mixed-mode oscillations in this regime. The statistics predicted by the analysis of the Poincare map and those observed in the numerical experiments of the continuous system show a very good agreement.Comment: Chaos: An Interdisciplinary Journal of Nonlinear Science (tentatively, Sept 2008

    Autonomous Bursting in a Homoclinic System

    Full text link
    A continuous train of irregularly spaced spikes, peculiar of homoclinic chaos, transforms into clusters of regularly spaced spikes, with quiescent periods in between (bursting regime), by feeding back a low frequency portion of the dynamical output. Such autonomous bursting results to be extremely robust against noise; we provide experimental evidence of it in a CO2 laser with feedback. The phenomen here presented display qualitative analogies with bursting phenomena in neurons.Comment: Submitted to Phys. Rev. Lett., 14 pages, 5 figure

    Emergence of chaotic attractor and anti-synchronization for two coupled monostable neurons

    Full text link
    The dynamics of two coupled piece-wise linear one-dimensional monostable maps is investigated. The single map is associated with Poincare section of the FitzHugh-Nagumo neuron model. It is found that a diffusive coupling leads to the appearance of chaotic attractor. The attractor exists in an invariant region of phase space bounded by the manifolds of the saddle fixed point and the saddle periodic point. The oscillations from the chaotic attractor have a spike-burst shape with anti-phase synchronized spiking.Comment: To be published in CHAO

    Dynamics of excitable cells: spike-adding phenomena in action

    Get PDF
    We study the dynamics of action potentials of some electrically excitable cells: neurons and cardiac muscle cells. Bursting, following a fast–slow dynamics, is the most characteristic behavior of these dynamical systems, and the number of spikes may change due to spike-adding phenomenon. Using analytical and numerical methods we give, by focusing on the paradigmatic 3D Hindmarsh–Rose neuron model, a review of recent results on the global organization of the parameter space of neuron models with bursting regions occurring between saddle-node and homoclinic bifurcations (fold/hom bursting). We provide a generic overview of the different bursting regimes that appear in the parametric phase space of the model and the bifurcations among them. These techniques are applied in two realistic frameworks: insect movement gait changes and the appearance of Early Afterdepolarizations in cardiac dynamics

    Mechanism, dynamics, and biological existence of multistability in a large class of bursting neurons

    Full text link
    Multistability, the coexistence of multiple attractors in a dynamical system, is explored in bursting nerve cells. A modeling study is performed to show that a large class of bursting systems, as defined by a shared topology when represented as dynamical systems, is inherently suited to support multistability. We derive the bifurcation structure and parametric trends leading to multistability in these systems. Evidence for the existence of multirhythmic behavior in neurons of the aquatic mollusc Aplysia californica that is consistent with our proposed mechanism is presented. Although these experimental results are preliminary, they indicate that single neurons may be capable of dynamically storing information for longer time scales than typically attributed to nonsynaptic mechanisms.Comment: 24 pages, 8 figure

    Chaotic oscillations in a map-based model of neural activity

    Full text link
    We propose a discrete time dynamical system (a map) as phenomenological model of excitable and spiking-bursting neurons. The model is a discontinuous two-dimensional map. We find condition under which this map has an invariant region on the phase plane, containing chaotic attractor. This attractor creates chaotic spiking-bursting oscillations of the model. We also show various regimes of other neural activities (subthreshold oscillations, phasic spiking etc.) derived from the proposed model

    A comparative study fourth order runge kutta-tvd Scheme and fluent software case of inlet flow problems

    Get PDF
    Inlet as part of aircraft engine plays important role in controlling the rate of airflow entering to the engine. The shape of inlet has to be designed in such away to make the rate of airflow does not change too much with angle of attack and also not much pressure losses at the time, the airflow entering to the compressor section. It is therefore understanding on the flow pattern inside the inlet is important. The present work presents on the use of the Fourth Order Runge Kutta – Harten Yee TVD scheme for the flow analysis inside inlet. The flow is assumed as an inviscid quasi two dimensional compressible flow. As an initial stage of computer code development, here uses three generic inlet models. The first inlet model to allow the problem in hand solved as the case of inlet with expansion wave case. The second inlet model will relate to the case of expansion compression wave. The last inlet model concerns with the inlet which produce series of weak shock wave and end up with a normal shock wave. The comparison result for the same test case with Fluent Software [1, 2] indicates that the developed computer code based on the Fourth Order Runge Kutta – Harten – Yee TVD scheme are very close to each other. However for complex inlet geometry, the problem is in the way how to provide an appropriate mesh model

    Spontaneous spiking in an autaptic Hodgkin-Huxley set up

    Full text link
    The effect of intrinsic channel noise is investigated for the dynamic response of a neuronal cell with a delayed feedback loop. The loop is based on the so-called autapse phenomenon in which dendrites establish not only connections to neighboring cells but as well to its own axon. The biophysical modeling is achieved in terms of a stochastic Hodgkin-Huxley model containing such a built in delayed feedback. The fluctuations stem from intrinsic channel noise, being caused by the stochastic nature of the gating dynamics of ion channels. The influence of the delayed stimulus is systematically analyzed with respect to the coupling parameter and the delay time in terms of the interspike interval histograms and the average interspike interval. The delayed feedback manifests itself in the occurrence of bursting and a rich multimodal interspike interval distribution, exhibiting a delay-induced reduction of the spontaneous spiking activity at characteristic frequencies. Moreover, a specific frequency-locking mechanism is detected for the mean interspike interval.Comment: 8 pages, 10 figure
    • 

    corecore