4 research outputs found

    Generation of Explicit Knowledge from Empirical Data through Pruning of Trainable Neural Networks

    Full text link
    This paper presents a generalized technology of extraction of explicit knowledge from data. The main ideas are 1) maximal reduction of network complexity (not only removal of neurons or synapses, but removal all the unnecessary elements and signals and reduction of the complexity of elements), 2) using of adjustable and flexible pruning process (the pruning sequence shouldn't be predetermined - the user should have a possibility to prune network on his own way in order to achieve a desired network structure for the purpose of extraction of rules of desired type and form), and 3) extraction of rules not in predetermined but any desired form. Some considerations and notes about network architecture and training process and applicability of currently developed pruning techniques and rule extraction algorithms are discussed. This technology, being developed by us for more than 10 years, allowed us to create dozens of knowledge-based expert systems. In this paper we present a generalized three-step technology of extraction of explicit knowledge from empirical data.Comment: 9 pages, The talk was given at the IJCNN '99 (Washington DC, July 1999

    Artificial Neural Network Pruning to Extract Knowledge

    Full text link
    Artificial Neural Networks (NN) are widely used for solving complex problems from medical diagnostics to face recognition. Despite notable successes, the main disadvantages of NN are also well known: the risk of overfitting, lack of explainability (inability to extract algorithms from trained NN), and high consumption of computing resources. Determining the appropriate specific NN structure for each problem can help overcome these difficulties: Too poor NN cannot be successfully trained, but too rich NN gives unexplainable results and may have a high chance of overfitting. Reducing precision of NN parameters simplifies the implementation of these NN, saves computing resources, and makes the NN skills more transparent. This paper lists the basic NN simplification problems and controlled pruning procedures to solve these problems. All the described pruning procedures can be implemented in one framework. The developed procedures, in particular, find the optimal structure of NN for each task, measure the influence of each input signal and NN parameter, and provide a detailed verbal description of the algorithms and skills of NN. The described methods are illustrated by a simple example: the generation of explicit algorithms for predicting the results of the US presidential election.Comment: IJCNN 202
    corecore