161 research outputs found

    Writer identification approach based on bag of words with OBI features

    Get PDF
    Handwriter identification aims to simplify the task of forensic experts by providing them with semi-automated tools in order to enable them to narrow down the search to determine the final identification of an unknown handwritten sample. An identification algorithm aims to produce a list of predicted writers of the unknown handwritten sample ranked in terms of confidence measure metrics for use by the forensic expert will make the final decision. Most existing handwriter identification systems use either statistical or model-based approaches. To further improve the performances this paper proposes to deploy a combination of both approaches using Oriented Basic Image features and the concept of graphemes codebook. To reduce the resulting high dimensionality of the feature vector a Kernel Principal Component Analysis has been used. To gauge the effectiveness of the proposed method a performance analysis, using IAM dataset for English handwriting and ICFHR 2012 dataset for Arabic handwriting, has been carried out. The results obtained achieved an accuracy of 96% thus demonstrating its superiority when compared against similar techniques

    Feature Extraction Methods for Character Recognition

    Get PDF
    Not Include

    Calligraphic Stylisation Learning with a Physiologically Plausible Model of Movement and Recurrent Neural Networks

    Get PDF
    We propose a computational framework to learn stylisation patterns from example drawings or writings, and then generate new trajectories that possess similar stylistic qualities. We particularly focus on the generation and stylisation of trajectories that are similar to the ones that can be seen in calligraphy and graffiti art. Our system is able to extract and learn dynamic and visual qualities from a small number of user defined examples which can be recorded with a digitiser device, such as a tablet, mouse or motion capture sensors. Our system is then able to transform new user drawn traces to be kinematically and stylistically similar to the training examples. We implement the system using a Recurrent Mixture Density Network (RMDN) combined with a representation given by the parameters of the Sigma Lognormal model, a physiologically plausible model of movement that has been shown to closely reproduce the velocity and trace of human handwriting gestures
    corecore