39,215 research outputs found

    Complexity spectrum of some discrete dynamical systems

    Full text link
    We first study birational mappings generated by the composition of the matrix inversion and of a permutation of the entries of 3Ă—3 3 \times 3 matrices. We introduce a semi-numerical analysis which enables to compute the Arnold complexities for all the 9!9! possible birational transformations. These complexities correspond to a spectrum of eighteen algebraic values. We then drastically generalize these results, replacing permutations of the entries by homogeneous polynomial transformations of the entries possibly depending on many parameters. Again it is shown that the associated birational, or even rational, transformations yield algebraic values for their complexities.Comment: 1 LaTex fil

    Stable multivariate WW-Eulerian polynomials

    Full text link
    We prove a multivariate strengthening of Brenti's result that every root of the Eulerian polynomial of type BB is real. Our proof combines a refinement of the descent statistic for signed permutations with the notion of real stability-a generalization of real-rootedness to polynomials in multiple variables. The key is that our refined multivariate Eulerian polynomials satisfy a recurrence given by a stability-preserving linear operator. Our results extend naturally to colored permutations, and we also give stable generalizations of recent real-rootedness results due to Dilks, Petersen, and Stembridge on affine Eulerian polynomials of types AA and CC. Finally, although we are not able to settle Brenti's real-rootedness conjecture for Eulerian polynomials of type DD, nor prove a companion conjecture of Dilks, Petersen, and Stembridge for affine Eulerian polynomials of types BB and DD, we indicate some methods of attack and pose some related open problems.Comment: 17 pages. To appear in J. Combin. Theory Ser.

    Cycle structure of random permutations with cycle weights

    Full text link
    We investigate the typical cycle lengths, the total number of cycles, and the number of finite cycles in random permutations whose probability involves cycle weights. Typical cycle lengths and total number of cycles depend strongly on the parameters, while the distributions of finite cycles are usually independent Poisson random variables.Comment: 22 pages, 2 figure

    Combinatorial specification of permutation classes

    Get PDF
    This article presents a methodology that automatically derives a combinatorial specification for the permutation class C = Av(B), given its basis B of excluded patterns and the set of simple permutations in C, when these sets are both finite. This is achieved considering both pattern avoidance and pattern containment constraints in permutations.The obtained specification yields a system of equations satisfied by the generating function of C, this system being always positiveand algebraic. It also yields a uniform random sampler of permutations in C. The method presentedis fully algorithmic

    Applications of the Brauer complex: card shuffling, permutation statistics, and dynamical systems

    Get PDF
    By algebraic group theory, there is a map from the semisimple conjugacy classes of a finite group of Lie type to the conjugacy classes of the Weyl group. Picking a semisimple class uniformly at random yields a probability measure on conjugacy classes of the Weyl group. Using the Brauer complex, it is proved that this measure agrees with a second measure on conjugacy classes of the Weyl group induced by a construction of Cellini using the affine Weyl group. Formulas for Cellini's measure in type AA are found. This leads to new models of card shuffling and has interesting combinatorial and number theoretic consequences. An analysis of type C gives another solution to a problem of Rogers in dynamical systems: the enumeration of unimodal permutations by cycle structure. The proof uses the factorization theory of palindromic polynomials over finite fields. Contact is made with symmetric function theory.Comment: One change: we fix a typo in definition of f(m,k,i,d) on page 1
    • …
    corecore