154 research outputs found

    QuNetSim: A Software Framework for Quantum Networks

    Full text link
    As quantum internet technologies develop, the need for simulation software and education for quantum internet rises. QuNetSim aims to fill this need. QuNetSim is a Python software framework that can be used to simulate quantum networks up to the network layer. The goal of QuNetSim is to make it easier to investigate and test quantum networking protocols over various quantum network configurations and parameters. The framework incorporates many known quantum network protocols so that users can quickly build simulations and beginners can easily learn to implement their own quantum networking protocols.Comment: 11 pages, 6 figure

    Automated error correction in superdense coding, with implementation on superconducting quantum computer

    Full text link
    Construction of a fault-tolerant quantum computer remains a challenging problem due to unavoidable noise in quantum states and the fragility of quantum entanglement. However, most of the error-correcting codes increases the complexity of the algorithms, thereby decreasing any quantum advantage. Here we present a task-specific error-correction technique that provides a complete protection over a restricted set of quantum states. Specifically, we give an automated error correction in Superdense Coding algorithms utilizing n-qubit generalized Bell states. At its core, it is based on non-destructive discrimination method of Bell states involving measurements on ancilla qubits (phase and parity ancilla). The algorithm is shown to be distributable and can be distributed to any set of parties sharing orthogonal states. Automated refers to experimentally implementing the algorithm in a quantum computer by utilizing unitary operators with no measurements in between and thus without the need for outside intervention. We also experimentally realize our automated error correction technique for three different types of superdense coding algorithm on a 7-qubit superconducting IBM quantum computer and also on a 27-qubit quantum simulator in the presence of noise. Probability histograms are generated to show the high fidelity of our experimental results. Quantum state tomography is also carried out with the quantum computer to explicate the efficacy of our method.Comment: 14 Pages, 16 Figures, 3 Table

    Information Theoretic Resources in Quantum Theory

    Full text link
    Resource identification and quantification is an essential element of both classical and quantum information theory. Entanglement is one of these resources, arising when quantum communication and nonlocal operations are expensive to perform. In the first part of this thesis we quantify the effective entanglement when operations are additionally restricted. For an important class of errors we find a linear relationship between the usual and effective higher dimensional generalization of concurrence, a measure of entanglement. In the second chapter we focus on nonlocality in the presence of superselection rules, where we propose a scheme that may be used to activate nongenuinely multipartite nonlocality with multiple copies of the state. We show that whenever the number of particles is insufficient, the genuinely multipartite nonlocality is degraded to nongenuinely multipartite. While in the first few chapters we focus on understanding the resources present in quantum states, in the final part we turn the picture around and instead treat operations themselves as a resource. We provide our observers with free access to classical operations - ie. those that cannot detect or generate quantum coherence. We show that the operation of interest can then be used to either generate or detect quantum coherence if and only if it violates a particular commutation relation. Using the relative entropy, the commutation relation provides us with a measure of nonclassicality of operations. We show that the measure is a sum of two contributions, the generating power and the distinguishing power, each of which is separately an essential ingredient in quantum communication and information processing. The measure also sheds light on the operational meaning of quantum discord, which we show can be interpreted as the difference in superdense coding capacity between a quantum state and a classical state.Comment: Thesis, 109 page

    Model checking quantum protocols

    Get PDF
    This thesis describes model checking techniques for protocols arising in quantum information theory and quantum cryptography. We discuss the theory and implementation of a practical model checker, QMC, for quantum protocols. In our framework, we assume that the quantum operations performed in a protocol are restricted to those within the stabilizer formalism; while this particular set of operations is not universal for quantum computation, it allows us to develop models of several useful protocols as well as of systems involving both classical and quantum information processing. We detail the syntax, semantics and type system of QMC’s modelling language, the logic QCTL which is used for verification, and the verification algorithms that have been implemented in the tool. We demonstrate our techniques with applications to a number of case studies

    Advances in High Dimensional Quantum Entanglement

    Full text link
    Since its discovery in the last century, quantum entanglement has challenged some of our most cherished classical views, such as locality and reality. Today, the second quantum revolution is in full swing and promises to revolutionize areas such as computation, communication, metrology, and imaging. Here, we review conceptual and experimental advances in complex entangled systems involving many multilevel quantum particles. We provide an overview of the latest technological developments in the generation and manipulation of high-dimensionally entangled photonic systems encoded in various discrete degrees of freedom such as path, transverse spatial modes or time/frequency bins. This overview should help to transfer various physical principles for the generation and manipulation from one to another degree of freedom and thus inspire new technical developments. We also show how purely academic questions and curiosity led to new technological applications. Here fundamental research provides the necessary knowledge for coming technologies such as a prospective quantum internet or the quantum teleportation of all information stored in a quantum system. Finally, we discuss some important problems in the area of high-dimensional entanglement and give a brief outlook on possible future developments.Comment: Comments and suggestions for additional references are welcome! Updated affiliations onl
    corecore