324 research outputs found

    Optimization Model for Planning Precision Grasps with Multi-Fingered Hands

    Full text link
    Precision grasps with multi-fingered hands are important for precise placement and in-hand manipulation tasks. Searching precision grasps on the object represented by point cloud, is challenging due to the complex object shape, high-dimensionality, collision and undesired properties of the sensing and positioning. This paper proposes an optimization model to search for precision grasps with multi-fingered hands. The model takes noisy point cloud of the object as input and optimizes the grasp quality by iteratively searching for the palm pose and finger joints positions. The collision between the hand and the object is approximated and penalized by a series of least-squares. The collision approximation is able to handle the point cloud representation of the objects with complex shapes. The proposed optimization model is able to locate collision-free optimal precision grasps efficiently. The average computation time is 0.50 sec/grasp. The searching is robust to the incompleteness and noise of the point cloud. The effectiveness of the algorithm is demonstrated by experiments.Comment: Submitted to IROS2019, experiment on BarrettHand, 8 page

    Multi-FinGAN: generative coarse-to-fine sampling of multi-finger grasps

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksWhile there exists many methods for manipulating rigid objects with parallel-jaw grippers, grasping with multi- finger robotic hands remains a quite unexplored research topic. Reasoning and planning collision-free trajectories on the additional degrees of freedom of several fingers represents an important challenge that, so far, involves computationally costly and slow processes. In this work, we present Multi-FinGAN, a fast generative multi-finger grasp sampling method that synthesizes high quality grasps directly from RGB-D images in about a second. We achieve this by training in an end-to-end fashion a coarse-to-fine model composed of a classification network that distinguishes grasp types according to a specific taxonomy and a refinement network that produces refined grasp poses and joint angles. We experimentally validate and benchmark our method against a standard grasp-sampling method on 790 grasps in simulation and 20 grasps on a real Franka Emika Panda. All experimental results using our method show consistent improvements both in terms of grasp quality metrics and grasp success rate. Remarkably, our approach is up to 20-30 times faster than the baseline, a significant improvement that opens the door to feedback-based grasp re-planning and task informative grasping. Code is available at https://irobotics.aalto.fi/multi-fingan/.Peer ReviewedPostprint (author's final draft

    Combining Shape Completion and Grasp Prediction for Fast and Versatile Grasping with a Multi-Fingered Hand

    Full text link
    Grasping objects with limited or no prior knowledge about them is a highly relevant skill in assistive robotics. Still, in this general setting, it has remained an open problem, especially when it comes to only partial observability and versatile grasping with multi-fingered hands. We present a novel, fast, and high fidelity deep learning pipeline consisting of a shape completion module that is based on a single depth image, and followed by a grasp predictor that is based on the predicted object shape. The shape completion network is based on VQDIF and predicts spatial occupancy values at arbitrary query points. As grasp predictor, we use our two-stage architecture that first generates hand poses using an autoregressive model and then regresses finger joint configurations per pose. Critical factors turn out to be sufficient data realism and augmentation, as well as special attention to difficult cases during training. Experiments on a physical robot platform demonstrate successful grasping of a wide range of household objects based on a depth image from a single viewpoint. The whole pipeline is fast, taking only about 1 s for completing the object's shape (0.7 s) and generating 1000 grasps (0.3 s).Comment: 8 pages, 10 figures, 3 tables, 1 algorithm, 2023 IEEE-RAS International Conference on Humanoid Robots (Humanoids), Project page: https://dlr-alr.github.io/2023-humanoids-completio
    • …
    corecore