517,597 research outputs found

    Integrability and chaos: the classical uncertainty

    Full text link
    In recent years there has been a considerable increase in the publishing of textbooks and monographs covering what was formerly known as random or irregular deterministic motion, now named by the more fashionable term of deterministic chaos. There is still substantial interest in a matter that is included in many graduate and even undergraduate courses on classical mechanics. Based on the Hamiltonian formalism, the main objective of this article is to provide, from the physicist's point of view, an overall and intuitive review of this broad subject (with some emphasis on the KAM theorem and the stability of planetary motions) which may be useful to both students and instructors.Comment: 24 pages, 10 figure

    Lower Bounds on Query Complexity for Testing Bounded-Degree CSPs

    Full text link
    In this paper, we consider lower bounds on the query complexity for testing CSPs in the bounded-degree model. First, for any ``symmetric'' predicate P:0,1k0,1P:{0,1}^{k} \to {0,1} except \equ where k3k\geq 3, we show that every (randomized) algorithm that distinguishes satisfiable instances of CSP(P) from instances (P1(0)/2kϵ)(|P^{-1}(0)|/2^k-\epsilon)-far from satisfiability requires Ω(n1/2+δ)\Omega(n^{1/2+\delta}) queries where nn is the number of variables and δ>0\delta>0 is a constant that depends on PP and ϵ\epsilon. This breaks a natural lower bound Ω(n1/2)\Omega(n^{1/2}), which is obtained by the birthday paradox. We also show that every one-sided error tester requires Ω(n)\Omega(n) queries for such PP. These results are hereditary in the sense that the same results hold for any predicate QQ such that P1(1)Q1(1)P^{-1}(1) \subseteq Q^{-1}(1). For EQU, we give a one-sided error tester whose query complexity is O~(n1/2)\tilde{O}(n^{1/2}). Also, for 2-XOR (or, equivalently E2LIN2), we show an Ω(n1/2+δ)\Omega(n^{1/2+\delta}) lower bound for distinguishing instances between ϵ\epsilon-close to and (1/2ϵ)(1/2-\epsilon)-far from satisfiability. Next, for the general k-CSP over the binary domain, we show that every algorithm that distinguishes satisfiable instances from instances (12k/2kϵ)(1-2k/2^k-\epsilon)-far from satisfiability requires Ω(n)\Omega(n) queries. The matching NP-hardness is not known, even assuming the Unique Games Conjecture or the dd-to-11 Conjecture. As a corollary, for Maximum Independent Set on graphs with nn vertices and a degree bound dd, we show that every approximation algorithm within a factor d/\poly\log d and an additive error of ϵn\epsilon n requires Ω(n)\Omega(n) queries. Previously, only super-constant lower bounds were known

    Effective Potential for Complex Langevin Equations

    Full text link
    We construct an effective potential for the complex Langevin equation on a lattice. We show that the minimum of this effective potential gives the space-time and Langevin time average of the complex Langevin field. The loop expansion of the effective potential is matched with the derivative expansion of the associated Schwinger-Dyson equation to predict the stationary distribution to which the complex Langevin equation converges.Comment: 23 pages, 2 figure

    Characteristics of Cosmic Time

    Get PDF
    The nature of cosmic time is illuminated using Hamilton-Jacobi theory for general relativity. For problems of interest to cosmology, one may solve for the phase of the wavefunctional by using a line integral in superspace. Each contour of integration corresponds to a particular choice of time hypersurface, and each yields the same answer. In this way, one can construct a covariant formalism where all time hypersurfaces are treated on an equal footing. Using the method of characteristics, explicit solutions for an inflationary epoch with several scalar fields are given. The theoretical predictions of double inflation are compared with recent galaxy data and large angle microwave background anisotropies.Comment: 20 pages, RevTex using Latex 2.09, Submitted to Physical Review D Two figures included in fil

    Efficient size estimation and impossibility of termination in uniform dense population protocols

    Full text link
    We study uniform population protocols: networks of anonymous agents whose pairwise interactions are chosen at random, where each agent uses an identical transition algorithm that does not depend on the population size nn. Many existing polylog(n)(n) time protocols for leader election and majority computation are nonuniform: to operate correctly, they require all agents to be initialized with an approximate estimate of nn (specifically, the exact value logn\lfloor \log n \rfloor). Our first main result is a uniform protocol for calculating log(n)±O(1)\log(n) \pm O(1) with high probability in O(log2n)O(\log^2 n) time and O(log4n)O(\log^4 n) states (O(loglogn)O(\log \log n) bits of memory). The protocol is converging but not terminating: it does not signal when the estimate is close to the true value of logn\log n. If it could be made terminating, this would allow composition with protocols, such as those for leader election or majority, that require a size estimate initially, to make them uniform (though with a small probability of failure). We do show how our main protocol can be indirectly composed with others in a simple and elegant way, based on the leaderless phase clock, demonstrating that those protocols can in fact be made uniform. However, our second main result implies that the protocol cannot be made terminating, a consequence of a much stronger result: a uniform protocol for any task requiring more than constant time cannot be terminating even with probability bounded above 0, if infinitely many initial configurations are dense: any state present initially occupies Ω(n)\Omega(n) agents. (In particular, no leader is allowed.) Crucially, the result holds no matter the memory or time permitted. Finally, we show that with an initial leader, our size-estimation protocol can be made terminating with high probability, with the same asymptotic time and space bounds.Comment: Using leaderless phase cloc

    Convergence of large deviation estimators

    Full text link
    We study the convergence of statistical estimators used in the estimation of large deviation functions describing the fluctuations of equilibrium, nonequilibrium, and manmade stochastic systems. We give conditions for the convergence of these estimators with sample size, based on the boundedness or unboundedness of the quantity sampled, and discuss how statistical errors should be defined in different parts of the convergence region. Our results shed light on previous reports of 'phase transitions' in the statistics of free energy estimators and establish a general framework for reliably estimating large deviation functions from simulation and experimental data and identifying parameter regions where this estimation converges.Comment: 13 pages, 6 figures. v2: corrections focusing the paper on large deviations; v3: minor corrections, close to published versio

    Polynomial Hamiltonian form of General Relativity

    Get PDF
    Phase space of General Relativity is extended to a Poisson manifold by inclusion of the determinant of the metric and conjugate momentum as additional independent variables. As a result, the action and the constraints take a polynomial form. New expression for the generating functional for the Green functions is proposed. We show that the Dirac bracket defines degenerate Poisson structure on a manifold, and a second class constraints are the Casimir functions with respect to this structure. As an application of the new variables, we consider the Friedmann universe.Comment: 33 pages, 1 figure, corrected reference
    corecore