162 research outputs found

    Flexible Modellerweiterung und Optimierung von Erdbebensimulationen

    Get PDF
    Simulations of realistic earthquake scenarios require scalable software and extensive supercomputing resources. With increasing fidelity in simulations, advanced rheological and source models need to be incorporated. I introduce a domain-specific language in order to handle the model flexibility in combination with the high efficiency requirements. The contributions in this thesis enabled the to date largest and longest dynamic rupture simulation of the 2004 Sumatra earthquake.Realistische Erdbebensimulationen benötigen skalierbare Software und beträchtliche Rechenressourcen. Mit zunehmender Genauigkeit der Simulationen müssen fortschrittliche rheologische und Quellmodelle integriert werden. Ich führe eine domänenspezifische Sprache ein, um die Modelflexibilität in Kombination mit den hohen Effizienzanforderungen zu beherrschen. Die Beiträge in dieser Arbeit haben die bisher größte und längste dynamische Bruchsimulation des Sumatra-Erdbebens von 2004 ermöglicht

    Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes

    Get PDF
    We present forward and adjoint spectral-element simulations of coupled acoustic and (an)elastic seismic wave propagation on fully unstructured hexahedral meshes. Simulations benefit from recent advances in hexahedral meshing, load balancing and software optimization. Meshing may be accomplished using a mesh generation tool kit such as CUBIT, and load balancing is facilitated by graph partitioning based on the SCOTCH library. Coupling between fluid and solid regions is incorporated in a straightforward fashion using domain decomposition. Topography, bathymetry and Moho undulations may be readily included in the mesh, and physical dispersion and attenuation associated with anelasticity are accounted for using a series of standard linear solids. Finite-frequency Fréchet derivatives are calculated using adjoint methods in both fluid and solid domains. The software is benchmarked for a layercake model. We present various examples of fully unstructured meshes, snapshots of wavefields and finite-frequency kernels generated by Version 2.0 ‘Sesame' of our widely used open source spectral-element package SPECFEM3

    AxiSEM: broadband 3-D seismic wavefields in axisymmetric media

    Get PDF
    We present a methodology to compute 3-D global seismic wavefields for realistic earthquake sources in visco-elastic anisotropic media, covering applications across the observable seismic frequency band with moderate computational resources. This is accommodated by mandating axisymmetric background models that allow for a multipole expansion such that only a 2-D computational domain is needed, whereas the azimuthal third dimension is computed analytically on the fly. This dimensional collapse opens doors for storing space–time wavefields on disk that can be used to compute Fréchet sensitivity kernels for waveform tomography. We use the corresponding publicly available AxiSEM (<a href="www.axisem.info"target="_blank">www.axisem.info</a>) open-source spectral-element code, demonstrate its excellent scalability on supercomputers, a diverse range of applications ranging from normal modes to small-scale lowermost mantle structures, tomographic models, and comparison with observed data, and discuss further avenues to pursue with this methodology

    Inelastic material response in multi-physics earthquake rupture simulations

    Get PDF
    Dynamic rupture models are able to shed light on earthquake source dynamics where direct observations are rare or non-existent. These multi-physics simulations incorporate earthquake rupture along a fault governed by frictional constitutive laws, which is coupled to seismic wave propagation described by the linear elastic wave equation. To accurately model the earthquake process, numerical models need to include realistic material properties such as the ability of rocks to deform plastically. This dissertation extends the Arbitrary High Order Derivative Discontinuous Galerkin (ADER-DG) framework of the dynamic rupture software SeisSol to account for non-linear off-fault plasticity. The impact of plasticity on rupture dynamics and the emitted seismic wave field is investigated in realistic simulations motivated by past earthquakes on geometrically complex faults. We first present the implementation of off-fault plasticity, which is verified in community benchmark problems and by three-dimensional numerical refinement studies. Motivated by the high efficiency of the implementation, we present a large-scale simulation of earthquake rupture along the segmented fault system of the 1992 Landers earthquake including plasticity. The results indicate that spatio-temporal rupture transfers are altered by plastic energy absorption, correlating with locations of geometrical fault complexity. In a next step, the model of the 1992 Landers earthquake is further extended to account for a new degree of realism among dynamic rupture models by incorporating high-resolution topography, 3D velocity structure, and viscoelastic attenuation in addition to off-fault plasticity. The simulation reproduces a broad range of observations including moment release rate, seismic waveform characteristics, mapped off-fault deformation patterns, and peak ground motions. We find that plasticity reduces the directivity effect and the spatial variability of peak ground velocities in comparison to the purely elastic simulation. In addition to this continental strike-slip earthquake, we investigate the effect of off-fault plasticity on source dynamics and seafloor deformation in a 3D subduction zone model of the 2004 Sumatra-Andaman earthquake. Simulated seafloor displacements are drastically altered by inelastic processes within the entire accretionary wedge, depending on fault- strike and the applied regional stress field, which potentially affects the tsunamigenesis. Finally, since these application scenarios show that rupture dynamics and the occurrence of off-fault plasticity are highly influenced by the assumed initial stresses and fault geometry, we propose a workflow to constrain dynamic rupture initial conditions with plasticity by long-term seismic cycling modelling. The exploited seismo-thermo-mechanical model provides a self-consistent slab geometry as well as initial stress and strength conditions that evolve according to the tectonic stress build-up and the temperature-dependent strength of the rocks. The geomechanically constrained subduction zone model suggests that the accretionary wedge is very close to plastic failure such that the occurrence of plastic strain hampers rupture to the trench, but locally increases the vertical seafloor uplift

    Inelastic material response in multi-physics earthquake rupture simulations

    Get PDF
    Dynamic rupture models are able to shed light on earthquake source dynamics where direct observations are rare or non-existent. These multi-physics simulations incorporate earthquake rupture along a fault governed by frictional constitutive laws, which is coupled to seismic wave propagation described by the linear elastic wave equation. To accurately model the earthquake process, numerical models need to include realistic material properties such as the ability of rocks to deform plastically. This dissertation extends the Arbitrary High Order Derivative Discontinuous Galerkin (ADER-DG) framework of the dynamic rupture software SeisSol to account for non-linear off-fault plasticity. The impact of plasticity on rupture dynamics and the emitted seismic wave field is investigated in realistic simulations motivated by past earthquakes on geometrically complex faults. We first present the implementation of off-fault plasticity, which is verified in community benchmark problems and by three-dimensional numerical refinement studies. Motivated by the high efficiency of the implementation, we present a large-scale simulation of earthquake rupture along the segmented fault system of the 1992 Landers earthquake including plasticity. The results indicate that spatio-temporal rupture transfers are altered by plastic energy absorption, correlating with locations of geometrical fault complexity. In a next step, the model of the 1992 Landers earthquake is further extended to account for a new degree of realism among dynamic rupture models by incorporating high-resolution topography, 3D velocity structure, and viscoelastic attenuation in addition to off-fault plasticity. The simulation reproduces a broad range of observations including moment release rate, seismic waveform characteristics, mapped off-fault deformation patterns, and peak ground motions. We find that plasticity reduces the directivity effect and the spatial variability of peak ground velocities in comparison to the purely elastic simulation. In addition to this continental strike-slip earthquake, we investigate the effect of off-fault plasticity on source dynamics and seafloor deformation in a 3D subduction zone model of the 2004 Sumatra-Andaman earthquake. Simulated seafloor displacements are drastically altered by inelastic processes within the entire accretionary wedge, depending on fault- strike and the applied regional stress field, which potentially affects the tsunamigenesis. Finally, since these application scenarios show that rupture dynamics and the occurrence of off-fault plasticity are highly influenced by the assumed initial stresses and fault geometry, we propose a workflow to constrain dynamic rupture initial conditions with plasticity by long-term seismic cycling modelling. The exploited seismo-thermo-mechanical model provides a self-consistent slab geometry as well as initial stress and strength conditions that evolve according to the tectonic stress build-up and the temperature-dependent strength of the rocks. The geomechanically constrained subduction zone model suggests that the accretionary wedge is very close to plastic failure such that the occurrence of plastic strain hampers rupture to the trench, but locally increases the vertical seafloor uplift

    Scaling full seismic waveform inversions

    Get PDF
    The main goal of this research study is to scale full seismic waveform inversions using the adjoint-state method to the data volumes that are nowadays available in seismology. Practical issues hinder the routine application of this, to a certain extent theoretically well understood, method. To a large part this comes down to outdated or flat out missing tools and ways to automate the highly iterative procedure in a reliable way. This thesis tackles these issues in three successive stages. It first introduces a modern and properly designed data processing framework sitting at the very core of all the consecutive developments. The ObsPy toolkit is a Python library providing a bridge for seismology into the scientific Python ecosystem and bestowing seismologists with effortless I/O and a powerful signal processing library, amongst other things. The following chapter deals with a framework designed to handle the specific data management and organization issues arising in full seismic waveform inversions, the Large-scale Seismic Inversion Framework. It has been created to orchestrate the various pieces of data accruing in the course of an iterative waveform inversion. Then, the Adaptable Seismic Data Format, a new, self-describing, and scalable data format for seismology is introduced along with the rationale why it is needed for full waveform inversions in particular and seismology in general. Finally, these developments are put into service to construct a novel full seismic waveform inversion model for elastic subsurface structure beneath the North American continent and the Northern Atlantic well into Europe. The spectral element method is used for the forward and adjoint simulations coupled with windowed time-frequency phase misfit measurements. Later iterations use 72 events, all happening after the USArray project has commenced, resulting in approximately 150`000 three components recordings that are inverted for. 20 L-BFGS iterations yield a model that can produce complete seismograms at a period range between 30 and 120 seconds while comparing favorably to observed data

    Numerical simulations of seismo-acoustic nuisance patterns from an induced M1.8 earthquake in the Helsinki, southern Finland, metropolitan area

    Full text link
    Irritating earthquake sounds, reported also at low ground shaking levels, can negatively impact the social acceptance of geo-engineering applications. Concurringly, earthquake sound patterns have been linked to faulting mechanisms, thus opening possibilities for earthquake source characterisation. Inspired by consistent reports of felt and heard disturbances associated with the weeks-long stimulation of a 6 km-deep geothermal system in 2018 below the Otaniemi district of Espoo, Helsinki, we conduct fully-coupled 3D numerical simulations of wave propagation in solid Earth and the atmosphere. We assess the sensitivity of ground shaking and audible noise distributions to the source geometry of small induced earthquakes, using the largest recorded event in 2018 of magnitude ML=1.8. Utilizing recent computational advances, we are able to model seismo-acoustic frequencies up to 25 Hz therefore reaching the lower limit of human sound sensitivity. Our results provide for the first time synthetic spatial nuisance distributions of audible sounds at the 50-100 m scale for a densely populated metropolitan region. In five here presented 3D coupled elastic-acoustic scenario simulations, we include the effects of topography and subsurface structure, and analyse the audible loudness of earthquake generated acoustic waves. We can show that in our region of interest, S-waves are generating the loudest sound disturbance. We compare our sound nuisance distributions to commonly used empirical relationships using statistical analysis. We find that our 3D synthetics are generally smaller than predicted empirically, and that the interplay of source-mechanism specific radiation pattern and topography can add considerable non-linear contributions. Our study highlights the complexity and information content of spatially variable audible effects, even when caused by very small earthquakes.Comment: 29 pages, 9 figures. This paper has been submitted to the Bulletin of the Seismological Society of America for publicatio

    Instaseis: instant global seismograms based on a broadband waveform database

    Get PDF
    We present a new method and implementation (Instaseis) to store global Green's functions in a database which allows for near-instantaneous (on the order of milliseconds) extraction of arbitrary seismograms. Using the axisymmetric spectral element method (AxiSEM), the generation of these databases, based on reciprocity of the Green's functions, is very efficient and is approximately half as expensive as a single AxiSEM forward run. Thus, this enables the computation of full databases at half the cost of the computation of seismograms for a single source in the previous scheme and allows to compute databases at the highest frequencies globally observed. By storing the basis coefficients of the numerical scheme (Lagrange polynomials), the Green's functions are 4th order accurate in space and the spatial discretization respects discontinuities in the velocity model exactly. High-order temporal interpolation using Lanczos resampling allows to retrieve seismograms at any sampling rate. AxiSEM is easily adaptable to arbitrary spherically symmetric models of Earth as well as other planets. In this paper, we present the basic rationale and details of the method as well as benchmarks and illustrate a variety of applications. The code is open source and available with extensive documentation at www.instaseis.net
    • …
    corecore