53,044 research outputs found
Penguasaan kemahiran generik di kalangan graduan hospitaliti di politeknik : satu kajian berkenaan keperluan industri perhotelan, persepsi pensyarah dan pelajar
Kajian yang dijalankan ini bertujuan untuk mengenal pasti kepentingan
kemahiran generik mengikut keperluan industri perhotelan di Malaysia dengan persepsi pensyarah dan persepsi pelajar Jabatan Hospitaliti. Oleh kerana matlamat kurikulum pendidikan kini adalah untuk melahirkan graduan yang dapat memenuhi keperluan pihak industri, maka kajian ini dijalankan untuk menilai hubungan di antara keperluan industri perhotelan di Malaysia dengan persepsi pensyarah dan pelajar Jabatan Hospitaliti di Politeknik. Terdapat 13 kemahiran generik yang diperolehi daripada Kementerian Pelajaran dan Latihan Ontario (1997) dijadikan
sebagai skop kepada instrumen kajian. Responden kajian terdiri daripada tiga pihak utama iaitu industri perhotelan di Malaysia yang melibatkan 40 buah hotel yang diwakili oleh MAH Chapter dan jawatankuasa dalam Malaysian Associated of Hotel (MAH), pensyarah Unit Hotel dan Katering dan pelajar semester akhir Diploma Hotel dan Katering di Politeknik Johor Bahru, Johor dan Politeknik Merlimau, Melaka. Kajian rintis yang dijalankan menunjukkan nilai Alpha Cronbach pada 0.8781. Data yang diperolehi dianalisis secara deskriptif dan inferensi dengan menggunakan perisian Statistical Package for Social Science (SPSS) versi 11.5. Melalui dapatan kajian, satu senarai berkenaan kemahiran generik yang diperlukan
oleh industri perhotelan telah dapat dihasilkan. Selain itu, senarai kemahiran generik menurut persepsi pensyarah dan juga persepsi pelajar turut dihasilkan. Hasil statistik dan graf garis yang diperolehi menunjukkan terdapat perbezaan di antara kemahiran generik yang diperlukan oleh industri perhotelan di Malaysia dengan kemahiran generik menurut persepsi pensyarah dan persepsi pelajar Politeknik. Dapatan analisis menggunakan korelasi Pearson mendapati bahawa tidak terdapat
perhubungan yang signifikan di antara kemahiran generik yang diperlukan oleh industri perhotelan dengan persepsi pensyarah dan persepsi pelajar. Namun begitu, terdapat hubungan yang signifikan di antara persepsi pensyarah dengan persepsi pelajar berkenaan dengan amalan kemahiran generik di Politeknik
A novel approach for ANFIS modelling based on Grey system theory for thermal error compensation
The fast and accurate modelling of thermal errors in machining is an important aspect for the implementation of thermal error compensation. This paper presents a novel modelling approach for thermal error compensation on CNC machine tools. The method combines the Adaptive Neuro Fuzzy Inference System (ANFIS) and Grey system theory to predict thermal errors in machining. Instead of following a traditional approach, which utilises original data patterns to construct the ANFIS model, this paper proposes to exploit Accumulation Generation Operation (AGO) to simplify the modelling procedures. AGO, a basis of the Grey system theory, is used to uncover a development tendency so that the features and laws of integration hidden in the chaotic raw data can be sufficiently revealed. AGO properties make it easier for the proposed model to design and predict. According to the simulation results, the proposed model demonstrates stronger prediction power than standard ANFIS model only with minimum number of training samples
Soft computing applications in dynamic model identification of polymer extrusion process
This paper proposes the application of soft computing to deal with the constraints in conventional modelling techniques of the dynamic extrusion process. The proposed technique increases the efficiency in utilising the available information during the model identification. The resultant model can be classified as a ‘grey-box model’ or has been termed as a ‘semi-physical model’ in the context. The extrusion process contains a number of parameters that are sensitive to the operating environment. Fuzzy ruled-based system is introduced into the analytical model of the extrusion by means of sub-models to approximate those operational-sensitive parameters. In drawing the optimal structure for the sub-models, a hybrid algorithm of genetic algorithm with fuzzy system (GA-Fuzzy) has been implemented. The sub-models obtained show advantages such as linguistic interpretability, simpler rule-base and less membership functions. The developed model is adaptive with its learning ability through the steepest decent error back-propagation algorithm. This ability might help to minimise the deviation of the model prediction when the operational-sensitive parameters adapt to the changing operating environment in the real situation. The model is first evaluated through simulations on the consistency of model prediction to the theoretical analysis. Then, the effectiveness of adaptive sub-models in approximating the operational-sensitive parameters during the operation is further investigated
A Review on the Application of Natural Computing in Environmental Informatics
Natural computing offers new opportunities to understand, model and analyze
the complexity of the physical and human-created environment. This paper
examines the application of natural computing in environmental informatics, by
investigating related work in this research field. Various nature-inspired
techniques are presented, which have been employed to solve different relevant
problems. Advantages and disadvantages of these techniques are discussed,
together with analysis of how natural computing is generally used in
environmental research.Comment: Proc. of EnviroInfo 201
An Incremental Construction of Deep Neuro Fuzzy System for Continual Learning of Non-stationary Data Streams
Existing FNNs are mostly developed under a shallow network configuration
having lower generalization power than those of deep structures. This paper
proposes a novel self-organizing deep FNN, namely DEVFNN. Fuzzy rules can be
automatically extracted from data streams or removed if they play limited role
during their lifespan. The structure of the network can be deepened on demand
by stacking additional layers using a drift detection method which not only
detects the covariate drift, variations of input space, but also accurately
identifies the real drift, dynamic changes of both feature space and target
space. DEVFNN is developed under the stacked generalization principle via the
feature augmentation concept where a recently developed algorithm, namely
gClass, drives the hidden layer. It is equipped by an automatic feature
selection method which controls activation and deactivation of input attributes
to induce varying subsets of input features. A deep network simplification
procedure is put forward using the concept of hidden layer merging to prevent
uncontrollable growth of dimensionality of input space due to the nature of
feature augmentation approach in building a deep network structure. DEVFNN
works in the sample-wise fashion and is compatible for data stream
applications. The efficacy of DEVFNN has been thoroughly evaluated using seven
datasets with non-stationary properties under the prequential test-then-train
protocol. It has been compared with four popular continual learning algorithms
and its shallow counterpart where DEVFNN demonstrates improvement of
classification accuracy. Moreover, it is also shown that the concept drift
detection method is an effective tool to control the depth of network structure
while the hidden layer merging scenario is capable of simplifying the network
complexity of a deep network with negligible compromise of generalization
performance.Comment: This paper has been published in IEEE Transactions on Fuzzy System
- …
