574 research outputs found

    Model exploration and analysis for quantitative safety refinement in probabilistic B

    Full text link
    The role played by counterexamples in standard system analysis is well known; but less common is a notion of counterexample in probabilistic systems refinement. In this paper we extend previous work using counterexamples to inductive invariant properties of probabilistic systems, demonstrating how they can be used to extend the technique of bounded model checking-style analysis for the refinement of quantitative safety specifications in the probabilistic B language. In particular, we show how the method can be adapted to cope with refinements incorporating probabilistic loops. Finally, we demonstrate the technique on pB models summarising a one-step refinement of a randomised algorithm for finding the minimum cut of undirected graphs, and that for the dependability analysis of a controller design.Comment: In Proceedings Refine 2011, arXiv:1106.348

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Relational Symbolic Execution

    Full text link
    Symbolic execution is a classical program analysis technique used to show that programs satisfy or violate given specifications. In this work we generalize symbolic execution to support program analysis for relational specifications in the form of relational properties - these are properties about two runs of two programs on related inputs, or about two executions of a single program on related inputs. Relational properties are useful to formalize notions in security and privacy, and to reason about program optimizations. We design a relational symbolic execution engine, named RelSym which supports interactive refutation, as well as proving of relational properties for programs written in a language with arrays and for-like loops

    Explanation of the Model Checker Verification Results

    Get PDF
    Immer wenn neue Anforderungen an ein System gestellt werden, müssen die Korrektheit und Konsistenz der Systemspezifikation überprüft werden, was in der Praxis in der Regel manuell erfolgt. Eine mögliche Option, um die Nachteile dieser manuellen Analyse zu überwinden, ist das sogenannte Contract-Based Design. Dieser Entwurfsansatz kann den Verifikationsprozess zur Überprüfung, ob die Anforderungen auf oberster Ebene konsistent verfeinert wurden, automatisieren. Die Verifikation kann somit iterativ durchgeführt werden, um die Korrektheit und Konsistenz des Systems angesichts jeglicher Änderung der Spezifikationen sicherzustellen. Allerdings ist es aufgrund der mangelnden Benutzerfreundlichkeit und der Schwierigkeiten bei der Interpretation von Verifizierungsergebnissen immer noch eine Herausforderung, formale Ansätze in der Industrie einzusetzen. Stellt beispielsweise der Model Checker bei der Verifikation eine Inkonsistenz fest, generiert er ein Gegenbeispiel (Counterexample) und weist gleichzeitig darauf hin, dass die gegebenen Eingabespezifikationen inkonsistent sind. Hier besteht die gewaltige Herausforderung darin, das generierte Gegenbeispiel zu verstehen, das oft sehr lang, kryptisch und komplex ist. Darüber hinaus liegt es in der Verantwortung der Ingenieurin bzw. des Ingenieurs, die inkonsistente Spezifikation in einer potenziell großen Menge von Spezifikationen zu identifizieren. Diese Arbeit schlägt einen Ansatz zur Erklärung von Gegenbeispielen (Counterexample Explanation Approach) vor, der die Verwendung von formalen Methoden vereinfacht und fördert, indem benutzerfreundliche Erklärungen der Verifikationsergebnisse der Ingenieurin bzw. dem Ingenieur präsentiert werden. Der Ansatz zur Erklärung von Gegenbeispielen wird mittels zweier Methoden evaluiert: (1) Evaluation anhand verschiedener Anwendungsbeispiele und (2) eine Benutzerstudie in Form eines One-Group Pretest-Posttest Experiments.Whenever new requirements are introduced for a system, the correctness and consistency of the system specification must be verified, which is often done manually in industrial settings. One viable option to traverse disadvantages of this manual analysis is to employ the contract-based design, which can automate the verification process to determine whether the refinements of top-level requirements are consistent. Thus, verification can be performed iteratively to ensure the system’s correctness and consistency in the face of any change in specifications. Having said that, it is still challenging to deploy formal approaches in industries due to their lack of usability and their difficulties in interpreting verification results. For instance, if the model checker identifies inconsistency during the verification, it generates a counterexample while also indicating that the given input specifications are inconsistent. Here, the formidable challenge is to comprehend the generated counterexample, which is often lengthy, cryptic, and complex. Furthermore, it is the engineer’s responsibility to identify the inconsistent specification among a potentially huge set of specifications. This PhD thesis proposes a counterexample explanation approach for formal methods that simplifies and encourages their use by presenting user-friendly explanations of the verification results. The proposed counterexample explanation approach identifies and explains relevant information from the verification result in what seems like a natural language statement. The counterexample explanation approach extracts relevant information by identifying inconsistent specifications from among the set of specifications, as well as erroneous states and variables from the counterexample. The counterexample explanation approach is evaluated using two methods: (1) evaluation with different application examples, and (2) a user-study known as one-group pretest and posttest experiment

    Safety-aware apprenticeship learning

    Full text link
    It is well acknowledged in the AI community that finding a good reward function for reinforcement learning is extremely challenging. Apprenticeship learning (AL) is a class of “learning from demonstration” techniques where the reward function of a Markov Decision Process (MDP) is unknown to the learning agent and the agent uses inverse reinforcement learning (IRL) methods to recover expert policy from a set of expert demonstrations. However, as the agent learns exclusively from observations, given a constraint on the probability of the agent running into unwanted situations, there is no verification, nor guarantee, for the learnt policy on the satisfaction of the restriction. In this dissertation, we study the problem of how to guide AL to learn a policy that is inherently safe while still meeting its learning objective. By combining formal methods with imitation learning, a Counterexample-Guided Apprenticeship Learning algorithm is proposed. We consider a setting where the unknown reward function is assumed to be a linear combination of a set of state features, and the safety property is specified in Probabilistic Computation Tree Logic (PCTL). By embedding probabilistic model checking inside AL, we propose a novel counterexample-guided approach that can ensure both safety and performance of the learnt policy. This algorithm guarantees that given some formal safety specification defined by probabilistic temporal logic, the learnt policy shall satisfy this specification. We demonstrate the effectiveness of our approach on several challenging AL scenarios where safety is essential
    • …
    corecore