
The Journal of Logic and Algebraic Programming 81 (2012) 26–45

Contents lists available at SciVerse ScienceDirect

The Journal of Logic and Algebraic Programming

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / j l a p

Generating counterexamples for quantitative safety specifications in

probabilistic B

Ukachukwu Ndukwu1

Department of Computing, Macquarie University, NSW 2109 Sydney, Australia

A R T I C L E I N F O A B S T R A C T

Article history:

Available online 14 July 2011

Keywords:

Probabilistic B

Expectations

Quantitative safety

Failures

Counterexamples

Probabilistic annotations generalise standard Hoare Logic [20] to quantitative properties of

probabilistic programs. They can be used to express critical expected values over program

variables that must be maintained during program execution. As for standard program de-

velopment, probabilistic assertions can be checked mechanically relative to an appropriate

program semantics. In the case that a mechanical prover is unable to complete such validity

checks then a counterexample to show that the annotation is incorrect can provide useful

diagnostic information. In this paper, we provide a definition of counterexamples as failure

traces for probabilistic assertions within the context of the pB language [19], an extension

of the standard B method [1] to cope with probabilistic programs. In addition, we propose

algorithmic techniques to find counterexamples where they exist, and suggest a ranking

mechanism to return ‘the most useful diagnostic information’ to the pB developer to aid the

resolution of the problem.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Following the seminal works of Clarke and Emerson [9], and Queille and Sifakis [35], the use of model checking [10] in

systems construction has grown in popularity. However, an interesting recent dimension in program verification is to take

advantage of the numerous benefits derived by combining proof-basedmethodswithmodel checking. One of the advantages

of doing this is that, if a set proof goal fails to be satisfied, then model checking can provide necessary intuition in the form

of counterexamples that explain the failure.

Counterexamplegeneration inmodel checkinghaveproved tobebeneficial for error-free systemsconstruction. It provides

ameans of summarising the failure of an exactmodel of a target system (coded in a formal language) tomeet its specification

(usually expressed in some temporal logic). Consequently, the formof a counterexample is largely dependent on the accuracy

of the system model, and that of its underlying logic of specification.

In a large scale proof-based systems construction as in Event-B [3], counterexamples have successfully been used to

provide intuition into the failureof aproof-basedmodel tomeetadesired specification. This ismadepossibleby incorporating

a model checker known as ProB [25] into the formal language development environment via an external plug-in. That is,

given an Event-B model and a desired specification, ProB can reveal (in linear-time) execution sequences of the model that

violate the specification of interest.

More recently, the notion of counterexample generation has been extended to also include probabilistic systems [4–

7,14,15]. This class of systems provide more generalisations of properties of their standard (non-probabilistic) counterparts

by enabling a verifier to query a probabilistic system model for more interesting properties like ‘the expected value of a

randomvariable over a finite number of runs’ of themodel. Counterexamples for probabilistic systemhave been investigated

for different types of temporal property specifications ranging from linear-timeproperties [7] to probabilistic branching time

E-mail address: ukachukwu.ndukwu@mq.edu.au
1 The author acknowledges support from the Australian Commonwealth Endeavour International Postgraduate Research Scholarship (E-IPRS) Fund.

1567-8326/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.jlap.2011.06.001

http://dx.doi.org/10.1016/j.jlap.2011.06.001
http://www.sciencedirect.com/science/journal/15678326
www.elsevier.com/locate/jlap
http://dx.doi.org/10.1016/j.jlap.2011.06.001

U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45 27

properties [15] for discrete system models (a focus of this work). In these cases, counterexamples were captured as a set of

finite paths of the probabilistic models that violate the property of interest.

In this paper, we show how to use probabilistic model checking techniques to generate and present counterexamples for

quantitative safety properties specified using an assertional-style formalism for program verification in the probabilistic B

language [19] in as much as ProB does for Event-B.

Traditionally, a safety property is used to capture the notion of “nothing bad should happen”. It conjectures a set of “good

states” such that program execution is restricted only to those states. Safety properties defined in this way are known as

program invariants — they are conditions over a program space that characterise all the states (including the initial state)

where nothing bad should happen. The mechanical check of proof of program correctness then reduces to finding any “bad

state” in the program space where program execution is guaranteed to violate the safety property.

Program assertions are predicates which identify conditions under which the program behaves correctly; they are used

to capture qualitative “safety properties." More recently they have been extended to quantitative safety properties for

probabilistic programs [27]. An example of the use of assertions in probabilistic program development is: “the program

remains in the set of good states with probability of at least 90%." But in reality they can be more general than that, and can

be used to capture interesting performance-style properties. Assertions are fundamental to the well-known B development

method [1] inwhich they can be checkedmechanically relative to a programmodel of the systembeing developed. Similarly,

the use of quantitative assertions have been shown to extend B to allow for the development of probabilistic programs. The

resulting extended method is known as probabilistic B or pB [19] with [27,30] as its underlying logic.

As for traditional safety, the pB development environment generalises quantitative safety by the use of ‘expectations’ over

random variables. The technique relies on the pB developer to suggest appropriate quantitative program invariants using

random variables such that the expected value over the random variables must always lie above a specified threshold. The

invariants can then be checked automatically— i.e. to ensure that the program’s operation sequences do not violate the given

threshold. In order to do so, a pBmechanical prover sub-tool known as the proof obligation generator constructs a number of

constraints which if satisfied will imply the inductive definition of the invariants. Each generated constraint is called a proof

obligation; when the proof obligation generator has (as a separate task) established the satisfaction of a constraint, we say

that the proof obligation has been discharged.

Although quantitative assertional-style reasoning for probabilistic systems is very general, it can sometimes fail, resulting

in undischargeable proof obligations which leave the pB developer with no clear understanding of the cause(s) of failure.

But naturally, failure might be traced to either of two possibilities: (a) a wrongly coded model of the system or even (b) an

incorrect specification. As a result, one of the challenges of development in pB is how to characterise behaviours of a system

that demonstrate the failure of a quantitative safety property. We shall propose a formalism where failure to meet some

expectations threshold would imply a violation of the safety property. We shall show however, that the failure of inductive

invariance amounts to the cause of the violation. Our approach here is to initiatemethods using probabilisticmodel checking

techniques to compute useful diagnostic information to help a pB designer to identify and fix either of the possible causes

of failure. Our aim is to ensure that the final machine for deployment is error-free.

In our precursor paper [32], we described how to formulate a quantitative safety property in pB development as a

probabilisticmodel checking problemprior to experimental analysis. Our investigations captured faulty programbehaviours

with respect to somequantitative safetypropertyof interest.Ourcontribution in thispaper isonhowtogenerateandpresent

useful and precise diagnostic feedback to the pB developer in order to aid better system construction. We summarise our

technique as follows:

• We show how to use a generalisation of the Probabilistic Computational Tree Logic or PCTL [16] similar to bounded

model checking techniques [8] over reward structures [23] of Markov Decision Processes (MDPs) [34] to compute

counterexamples consisting of only failure traces detailing the violation of a pB model safety property. We consider a

failure trace as one which leads to a state (and an operation) where the model execution fails to observe its definition

of safety inductivity. Failure traces defined in this way are very informative and are generalisations of the failure paths

proposed, for example, by Katoen and coworkers [15].

• Based on anMDP interpretation of a faulty pBmodel, we showhow to extractwhatwe term ‘themost useful diagnostic

information’ by using a scheduler that points to the closest root-cause of the failure. To do this, we propose a variation

of the k-shortest path algorithm [12] based on the expectation-transformer semantics of McIver and Morgan [27] to

locate the counterexample traces from the scheduler; in the case that there are several traces, we propose a ranking

methodology which uses the probability of occurrence of the traces or even their residual expectations to order the

counterexamples information.

• Finally, we illustrate the technique showing how to compute themost useful diagnostic information summarising the

failure of inductivity of the pB model safety property whose preliminary experimental analysis was initiated in [32].

The rest of this paper is structured as follows: Section 2 discusses probabilistic annotations and its application to safety

in pB development; Section 3 explains pB expectations as MDPs; we explain the strategy for counterexample generation in

Section 4; Section 5 is the automation and practical demonstration of that strategy; we discuss related work in Section 6;

and finally we conclude in Section 7.

28 U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45

1.1. Summary of notation

Function application is represented by a dot, as in f .x (rather than f (x)). We use an abstract finite state space S. Given

predicate predwewrite [pred] for the characteristic functionmapping states satisfying pred to 1 and to 0 otherwise, punning 1

and 0with “True" and “False", respectively.Wewrite ES as the set of real-valued functions from S, i.e. the set of expectations;

and whenever e, e′ ∈ ES we write e � e′ to mean that (∀s ∈ S. e.s ≤ e′.s). We let DS be the set of all discrete probability

distributions over S; and write Exp.δ.e = ∑
s∈S

(δ.s) × e.s for the expected value of e over S where δ ∈ DS and e ∈ ES.
Finally we write S∗ for the finite sequences of states in S.

2. Probabilistic annotations

When probabilistic programs execute they make random updates; in the semantics, that behaviour is modelled by

(discrete) probability distributions over possible final values of the program variables. Given a nondeterministic program

Prog operating over (abstract) 2 state space S we write [[Prog]] : S → DS for the semantic function taking initial states to

sets of distributions over final states. For example, the program fragment

pInc � s := s+1 p⊕ s := s−1 (1)

increments (state) variable s with probability p, or decrements it with probability 1−p.

In particular the semantics [[pInc]] [27] maps each initial state s to a probability distribution returning p or (1−p) for

(final) states s′ = (s+1) or s′ = (s−1), respectively. Since each initial state s results in a single distribution [[pInc]].swe say

that pInc is deterministic;whennondeterminism is also present, the result for each initial statewould be a set of distributions.

Rather than working with this semantics directly, we shall focus on the dual logical view generalising Hoare Logic [20].

Probabilistic Hoare Logic [27] takes into account the probabilistic judgements that can be made about probabilistic

programs, in particular it can express when predicates can be established only with some probability. However, as we shall

see, it is evenmoregeneral than that, capable of expressinggeneral expectedproperties of randomvariables over theprogram

state. We use Real-valued annotations of the program variables (interpreted as random variables); a program annotation is

said to be valid exactly when the expected value over the post-annotation is at least the value given by the pre-annotation.

In standard Hoare triples notation this can be expressed as

{pre} Prog {post}, (2)

and is valid exactly when Exp.([[Prog]].s).post ≥ pre.s 3 for all states S, where post is interpreted as a random variable over

final states and pre as a real-valued function.

With the notational convention set out in the previous section, we can give an example of a correct annotation for the

program fragment pInc

{p[s = −1] + (1−p)[s = 1]} pInc {[s = 0]}, (3)

which expresses the fact that from initial state s = −1, the probability of establishing s = 0 is p, and from s = 1 it is (1−p).
Hoare triples can be checked mechanically using a generalisation of Dijkstra’s weakest precondition or Wp semantics

defined on the program syntax of a simple programming language, as set out in Fig. 1. As for standard Wp this formula-

tion allows annotations to be checked mechanically [19,21]; moreover we see that annotation (2) is valid exactly when

pre � Wp.Prog.post.
In thispaper,weshall concentrateoncertifyingprobabilistic safetyexpressibleusingprobabilistic annotations. Informally,

a probabilistic safety property is a random variable whose expected value cannot be decreased on execution of the program.

(This idea generalises standard safety, where the truth of a safety predicate cannot be violated on execution of the program.)

Safety properties are characterised by inductive invariants: for example, the valid annotation {Expt×[pred]} Prog {Expt} says
that Expt is an inductive invariant for Progprovided it is executed in an initial state satisfying pred. To illustrate, the annotation

{s} pInc {s}, (4)

means that the expected value of s is never decreased.

Inductive invariants will be a significant component of the specifications in our pB models, to which we now turn.

2.1. Probabilistic safety in pB

pB [19] is an extension of standard B [1] to support the specification and refinement of probabilistic systems. Systems are

specified by a collection of pB machines which consist of operations describing possible program executions, together with

variable declarations and invariants prescribing correct behaviour.

2 Here we assume that the state space is abstract until explicitly defined.
3 Note that we also write Exp.([[Prog]].s).Expt to meanWp.Prog.Expt.s.

U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45 29

Fig. 1. Structural definition of the expectation transformer-style semantics.

Fig. 2. A simple faulty pB machine.

The machine set out in Fig. 2 illustrates some key features of the language. There are two operations — OpX and OpY

— which can update a variable cc. OpX can either increment cc by 1 or decrement it by the same value with probability p

or (1 − p), respectively, while OpY just resets the current value of cc to 0. In general, operations can execute only if their

preconditions hold. But in the absence of preconditions as in this case, the choice of which operation to execute is made

nondeterministically.

The remaining fields ascribe more information to the variables, constants and behaviour of the operations. Declarations

are made in the CONSTANTS and VARIABLES fields, and PROPERTIES and SEES state assumed properties and context of the

constants and variables. The INVARIANT field sets out invariant properties. The expression in the INITIALISATION clause

establishes the invariant and the operations OpX and OpYmust maintain it afterwards.

We shall concentrate on the EXPECTATIONS clause (boxed in Fig. 2), which was introduced by Hoang [19] to express

quantitative invariant or safety properties. The form of an EXPECTATIONS clause is given by

E � Expt, (5)

where both E and Expt are expectations. It specifies that the expected value of Expt should always be at least E, where the

expected value is determined by the distribution over the state space after any (valid) execution of themachine’s operations,

following initialisation. An example of the use of this construct is in Fig. 2 where the EXPECTATIONS clause is interpreted as

“the expected value of cc is always at least 0”. Hoang showed that this idea is guaranteed by the following valid annotations:

{E} init {Expt} and {[pred]×Expt} Op {Expt}, (6)

where Op is any operation with precondition pred and init is the machine’s initialisation. In what follows we shall refer to

(6) as the proof obligations for the associated expectations clause (5).

Checking the validity of program annotations, and in particular inductive invariants for loop-free program fragments

can be done mechanically based on the semantics set out in Fig. 1 [19]. In some cases however, the proof obligation can

fail to be discharged. There are two possible reasons for this. The first possibility is that Expt is too weak to be an inductive

invariant for the machine’s operations, and hence needs to be strengthened by finding another inductive Expt′ which again

satisfies (6) so that Expt′ � Expt and the original safety property can be validated. The second possibility is that a sequence

of operations of the machine can be found which explain the probabilistic safety property violation. In this case, providing

a counterexample can guide the prover with sufficient insight to correct the error.

30 U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45

In classical B model checking is used to locate a computation trace in terms of operation executions to find a state in

which the safety property is clearly violated [25]. Our aim in the next section is to extend this idea to the case of probabilistic

machines; wewill find that here too a counterexample is a unique trace from the initialisation to a state where the inductive

invariant fails to hold, so that similar model checking techniques can be used to locate it. In order to do this we must first

interpret the EXPECTATIONS clause above in terms of amodel checking problem.We turn to that problem in the next section.

3. EXPECTATIONS as probabilistic safety in MDPs

In abstract terms, apBmachine canbemodelledas aMarkovDecisionProcess (MDP) [34]by considering thenondetermin-

istic choices over all its operations.We demonstrate how to use this interpretation to define and present counterexamples to

probabilistic safety using model checking techniques for anMDP representation of an abstract pBmachine. This then allows

us to carry over behaviours of MDPs to pB machines explicitly, especially in terms of operation sequences of the latter.

We recall that an MDP combines the ideas of nondeterministic and probabilistic executions; we shall then use a formu-

lation in which a probabilistic program P takes an initial state s0 and outputs a set of probability distributions over final

states determining a single step of P’s execution [27]. When P executes arbitrarily we shall identify a computation trace as

a finite sequence of states 〈s0, s1, s2, . . . , sn〉 ∈ S∗ where each (si, si+1) is a probabilistic transition of P, i.e. si+1 can occur

with nonzero probability by executing P from si, that is to say there is a distribution δ ∈ DS associated with P such that

δ.si+1 > 0. This idea is based on a computation tree from which the individual traces can be extracted.

As formalised by Hoang [19], we express probabilistic safety specified as an EXPECTATIONS clause (as at (5)) of a pB

machine. A weak iteration of P given by it P ti, (as defined in Fig. 1) allows an arbitrary execution of any operation in P, and

as such expresses the possible computation traces so that the EXPECTATIONS clause given by (5) is satisfied exactly when

{E} (s := s0; it (P � skip) ti) {Expt} (7)

is valid, where s is a state variable initialised to s0 (see [19]). Our next task is to reformulate (7) in terms of finite state

exploration, giving access to an investigation of this safety property using probabilistic model checking.

3.1. Distributions over execution traces

Intuitively adistributionover execution traces is a computation tree recording the set of possible execution traces together

with their associated probabilities. The situation becomes more complicated in the presence of nondeterminism, where a

set of computation trees can be associated with a single program, capturing the effect of the demonic choices.

Definition1. GivenaprogramP, anexecution schedule is amapℵ : S∗ → DS so thatℵ.α ∈ [[P]].spicksaparticular resolution
of the nondeterminism in P to execute after the trace α, where s is the last item of α. (A more uniform formalisation would

give the distribution of initial states as ℵ.〈〉; but we prefer to give initial states explicitly.) Note that where necessary, we

shall simply refer to ℵ as a scheduler, to conform to standard terminology.

We can now formalise probabilistic computation trees using the idea of probability distributions over execution traces,

required to give a semantics to temporal properties. Such distributions are as usual given with respect to Borel algebras

based on the traces [13,26].

Definition 2. Given a program P, initial state s0 and scheduler ℵ, we define the corresponding trace distribution 〈|Pℵ|〉.s0 of

type S∗ → [0, 1] to be

〈|Pℵ|〉.s0.(s′) � 1 if s′ = s0 else 0

and 〈|Pℵ|〉.s0.(αss′) � 〈|Pℵ|〉.s0.(αs)×ℵ.(αs).s′

We can recover Wp-properties from computation trees by focussing on distributions over endpoints. If we take k steps

from some s0 according to the scheduler ℵ, then the probability of ending in state s′ is given by

[[Pkℵ]].s0.s′ �
∑

|α|=k

〈|Pℵ|〉.s0.(αs′).

We write (P � skip)k for the program P � skip iterated k times; its output from an initial state s0 is a set of distributions

[[Pkℵ]].s0 over S for all possible schedulers ℵ. It is a standard property of finitary MDPs that there is an extremal scheduler ℵ
such that Exp.([[Pkℵ.s0]]).Expt = Wp.(P � skip)k.Expt.

The importance of these definitions is that they give the explicit link between trees and state-based properties, ensuring

consistency between them — indeed if a safety property fails to hold then it must be the case that there is a computation

tree which will witness that fact. The next theorem gives alternative ways to express a safety property.

U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45 31

Theorem 1. Let p be a real value, s0 an initial state, P a probabilistic program, and Expt an expectation. The following statements

are equivalent.

(a) The triple {p} (s := s0; it (P � skip) ti) {Expt} holds;
(b) The inequality Exp.([[Pkℵ]].s0).Expt ≥ p, for all k ≥ 0 and schedulers ℵ;

(c) There exists a strongest expectation Expt′ such that Expt′ � Expt and Expt′ is an inductive invariant satisfying Expt′.s0 ≥ p.

Proof. After program initialisation we see that (a) is equivalent to (b) by definition of Wp.(it (P � skip) ti).Expt as a limit of

Wp.(P � skip)k.Expt [29]; (a) is equivalent to (c) since Expt′ � Wp.(it (P � skip) ti).Expt is the greatest inductive invariant
stronger than Expt. �

Theorem 1 (b) expresses how safety relates to finite computation trees and (c) how it relates to state-based properties

of the kind used in pB. In particular case (b) shows us how to refute the safety property: we must exhibit some finite k and

a scheduler ℵ such that its corresponding expected value of Expt over endpoints defined by [[Pkℵ]] falls below the specified

threshold.

Definition 3. Let p be a real value, s0 an initial state, P a probabilistic program, and Expt an expectation. A counterexample

to the safety property

{p} (s := s0; it (P � skip) ti) {Expt}
is an integer k > 0 and a scheduler ℵ such that

Exp.([[Pnℵ]].s0).Expt < p.

We call the associated distribution over paths, i.e. 〈|Pkℵ|〉.s0 a failure tree at k.

One of the problems of this kind of evidence for failure is that distributions are very complicated to digest, and if taken

as a whole, are not very informative as to the cause of the failure of the safety property. It is a challenge to present the

information in such a way that reasons for the failure can be more succinctly identified.

Classicalmodel checking techniques (involving no probability at all) are able to identify single traces leading to an explicit

failure of the property. Katoen and coworkers [15] has shown that for some probabilistic properties it is possible to use a

subset of the traces as evidence of refutation. Our aim is to find a similar simple presentation both for generalised failure

and for failure of Expt to be an inductive invariant. In fact the latter is a much simpler kind of failure than general failure of

safety as, like violation of standard failures, it can be evidenced by a single trace.

Definition 4. Given a program P, initial state s0 and scheduler ℵ and expectation Expt, we say that trace αs is a failure trace

for Expt and ℵ if

〈|Pℵ|〉.s0.(αs) > 0 and Wp.P.Expt.s < Expt.s.

Note that this definition corresponds to the standard definition of a counterexample trace illustrating a path to a failure

of a safety property: when Expt is standard (i.e. a characteristic function [G] representing the “good" states G) and P contains

no probabilistic transitions, ifWp.P.[G].s < [G].s then it must be the case that s satisfies G is true butWp.P.[G].s is false. In
other words that there exists a transition of P from s to the set of “bad" states.

It turns out that failure traces, taken together, play a significant role in explaining overall failure of a safety property. Our

first result says that if the general threshold for safety fails to be met, then failure traces must exist.

Corollary 1. Let p, s0, Expt and P be as defined in Theorem 1 above. If

Wp.(it P � skip ti).Expt.s0 < p,

then there exists a trace α and a scheduler ℵ such that α is a failure trace for ℵ and Expt.

Proof. Suppose for contradiction that there is no such trace. Then we may conclude that the expectation Expt satisfies

the inductive property relative to P for all states “reachable" with some positive probability. Moreover it must satisfy

Expt.s0 ≥ p, by applying this assumption to the empty trace. Now define Expt′ � Expt as the restriction of Expt to all reach-

able states; Expt′ is inductive by construction and so we apply Theorem 1 (c) to conclude that the safety property must be

satisfied. �

Unlike classical model checking, a single example of a failure trace is not sufficient to guarantee a general failure to

meet the threshold (unless of course that threshold is 1). But it does indicate that Expt is not inductive, and needs to be

32 U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45

strengthened at precisely those reachable states which do not satisfy the inductive property for Expt. Indeed if it cannot be

strengthened then there must be a failure tree.

In the special case that the expectation Expt is standard it has been shown by Katoen and coworkers [15] that rather than

producing the whole failure tree, it is possible to have a restriction to only those paths which have a non-zero probability

of leading to unsafe states — i.e. those states violating the safety condition such that their total probability lies above the

specified threshold. A generalisation of this idea in terms of expectations is to say that paths which lead to “unsafe states"

are precisely those which lead to a failure of inductivity. Unfortunately there does not seem to be a sufficiently simple

generalisation of that complete criterion for our general safety properties. There is however a sound rule which is similar in

flavour to Katoen’s result.

We say that a state s fails inductivity with respect to Expt and P if

Wp.(P � skip).Expt.s < Expt.s.

Note from Definition 4 that a failure path ends in such a state. We shall refer to states such as s as witnesses to failure.

With this definition, the next lemma shows that if there is a reduced collection of failure paths whose expected value

over the difference of Expt and Wp.P.Expt is sufficiently large then this is enough to evidence general failure of safety.

Lemma 1. Let P be a probabilistic program, s0 an initial state, and Expt an expectation and F be the set of reachable states which

fail inductivity. If there is some k and set of states G ⊆ F such that

Expt.s0 − Wp.(P � skip)k.([G]×(Expt.s0 − Wp.P.Expt.s0)) < p.

then

Wp.(P � skip)k+1.Expt.s0 < p.

Proof. Note that for states s ∈ G, Wp.P.Expt.s < Expt.s and now we reason:

p

> Expt.s0 − Wp.(P � skip)k.([G]×(Expt.s0 − Wp.P.Expt.s0)) Assumption

≥ “Wp-calculus”

Wp.(P � skip)k.Expt.s0 − Wp.(P � skip)k.([G]×(Expt.s0 − Wp.P.Expt.s0))

≥ “sublinearity”

Wp.(P � skip)k.(Expt.s0 − ([G]×(Expt.s0 − Wp.P.Expt.s0)))

≥ “arithmetic”

Wp.(P � skip)k.((1−[G])×Wp.(P � skip).Expt.s0 + [G]×Wp.(P � skip).Expt.s0)

≥ “arithmetic”

Wp.(P � skip)k.(Wp.(P � skip).Expt.s0)

= Wp.(P � skip)k+1.Expt.s0.

Given expectations X and Y, sublinearity means thatWp.P.(X − Y) � Wp.P.X − Wp.P.Y provided X − Y � 0. �

Note that Lem.1 is sufficient and thus is a restriction to failure paths. Next we illustrate the relationship between failure

traces and general failure in the example that follows.

Example 1. Fig. 3 shows a failure tree representing a chosen scheduler-specific instance D of the pB machine construction

in Fig.2. Its subtrees are captured by truncating the tree at finite k steps from its root; the branching probability p is 0.5.

Table 3.1 gives the expectation transformer analysis of every state in the endpoint of a given finite sub-distribution. The

initialisation INIT preserves the lower bound of the random-variable inductive invariant cc. Similarly, at step k = 0 (after the

initialisation), the lower bound of cc is also preserved since after the operation OPX the expected value of cc is not decreased.

However, the same cannot be said at the step k = 1. The operation OPY (afterwards) strictly decreases the invariant, and

that corresponds to an overall failure of the safety conditionWp.(OPX�OPY � skip)2.cc. Clearly, it has a distribution over its

endpoint that similarly decreases the expected value of the invariant. This is an indication that there is a problem at at step

k = 1 for a worst-case failure tree depicted in Fig. 3. Consequently, the state s1 is a witness to the failure, and the first faulty

execution trace of the machine is rightly given by the operations-state pair sequence: {INIT} (0), {OPX} (1), {OPY} (−1);
and this can occur with probability 0.5.

Clearly, a failure of the proof obligation for safety is given by the witness s1 evidencing the fact that

Wp.OPY .cc.s1 (= 0)< cc.s1 (= 1), corresponds to a violation of the threshold specified for the assertion in the EXPEC-

TATIONS clause.

U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45 33

Fig. 3. A failure tree describing a scheduler of the pB machine of Fig. 2.

Table 1

Analysis of the failure tree in Fig. 3.

Step (k) cc.s Wp.OP.cc Exp.[[Pk+1
D]].s0.cc

INIT 0 Wp.INIT .cc = 0 0

k = 0 0 (= cc.s0) Wp.OPX.cc.s0 = 0 0

k = 1 1 (= cc.s1) Wp.OPY .cc.s1 = 0 −0.5

The parameter k is the depth of the unfolding of the iteration. Note that the overall evaluation of safety is given by the last column, i.e. the expected value of cc

must be at least 0, as specified by the EXPECTATIONS clause. At k = 1 however, the expected value falls to -0.5. Translated to proof obligations, safety becomes a

check that the value of the third column must be at least the value computed in the second column. We see that failure of overall safety (at k = 2) corresponds

exactly to a failure of the proof obligation at step k = 1 where the expected value is strictly decreased, i.e.Wp.OPY .cc.s1 (= 0) < cc.s1 (= 1).

In this section, we have shown the role played by failure traces in the general failure of probabilistic safety. Our next task

is to show how to present failure trees for pB machines. We use a ranking mechanism, arguing that failure traces provide

the most useful diagnostic results. To do this, we use the PRISM model checker [17,33] to encode the pB machines and

the corresponding EXPECTATIONS clauses, and then interpret PRISM’s output as a failure tree from which traces could be

extracted and ranked.

In summary, we extract and present counterexamples for an abstract pB machine as follows:

1. Translate the pB machine as its equivalent PRISMmodel, together with an expression of the EXPECTATIONS clause as

a “reward structure”.

2. Determine the least k for which there is a failure using PRISM’s experiment facilities.

3. Extract an extremal scheduler from PRISM corresponding to a failure tree uponwhichwe perform further algorithmic

analysis.

4. Compute the set of failure traces from the resultant failure tree.

5. Rank the failure traces by their probabilities or other appropriate metrics of interest.

Automation of the first two steps has been described elsewhere [32] thus we only summarise their constructions.

We also note that it might be that such a k, whilst it exists, will not be found by this method if the computation resources

prove to be insufficient for the task. In the next section we summarise the first two automation tasks which together

use PRISM’s engine to indicate the presence of failure trees. Thereafter we explain the last three tasks while presenting

algorithmic techniques to aid their automation.

4. Extraction and presentation of counterexamples

The essential idea is to locate failure trees by successively exploring Wp.(P � skip)k.Expt.s0 for increasing values of

k. This is possible by Theorem 1. But to do this, we first interpret an abstract pB machine as a PRISM model, encoding the

former’s EXPECTATIONS clause as the latter’s reward structure [23]. In general, rewards are accumulated along paths; but

we enforce no accumulation until a special transition fires in a state s, where we evaluate Expt.s to correspond to the reward

in that state. This finitary unwinding will be tracked by a “counter” module whose role is to record the transition steps due

to execution of the machine’s operations.

34 U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45

4.1. Generating PRISM models of abstract pB machines

The PRISM language is based on the guarded commands formalism extended with a probabilistic choice update. This

allows the interaction of probability and nondeterminism in an abstract pB machine to be captured as an MDP in the tool.

The definition below sets out that idea.

Definition 5. A PRISMmodel description of an abstract pBmachineA, is a tuple given by P = 〈var(P), sys, {MM, CM}, Expt
(val(P))〉 consisting of a finite set of (Boolean or Integer) variables var(P), a system definition sys over valuations val(P)

of var(P); A finite set of modules {MM, CM}, where MM is the main module, and CM is the counter module. The system

definition sys is a process-algebraic expression containingMM and CM exactly once. Finally, Expt(val(P)) is the expectation

of a random variable constructed from val(P) using P’s reward structure. The main moduleMM encapsulates the operations

defined within A. It consists of:

• A finite set of local variables, i.e. var(MM) ⊆ var(P) such that:

– var(MM) are disjoint from the local variables of CM

– each variable v ∈ var(MM) has initial value init(v)

– init(MM) denotes the initial values of the variables in var(MM)
• A finite set of commands com(MM) describing the statements of the individual operations of A, where each cmd ∈

com(MM) includes:
– a guard gd(cmd) which is a Boolean function over val(var(P))

– an action act(cmd) label which is the name of each operation of A
– a finite set of update statements updates(cmd) � {〈λ1, u1〉, ..., 〈λn, un〉} such that for each λi ∈ (0, 1], ui is a

function from valuations over var(P) to the valuations over var(MM) and moreover
∑n

i=1
λi = 1;

The syntax of a typical PRISM update statement is:

[act] gd → λ1u1 + · · · + λnun

• The counter module CM is similarly defined in the same way as the main module MM but we restrict its set of local

variables such that var(CM) = {terminate, count, action} where

– terminate is of type Boolean and init (terminate) = false;

– count is of type Integer and count: [0, MAXCOUNT] and init (count) = 0, where MAXCOUNT is a model Integer constant;

– action is of type Integer and action: [0, TNA + 1] and init (action) = 0 where TNA is the total number of actions of

A.

• In addition, for each update statement of MM, there is an update of CM that synchronises with it. Those updates of CM

can only update the action variable and increment the count variable by 1. Also, CM must contain two extra update

statements: a similar unsynchronised update statement4 that can only update the action variable and increment the

count variable by 1; and a T-labelled update statement that can only reset the terminate variable to true whenever

the guard (count = MAXCOUNT) holds. We shall discuss the usefulness of the T-labelled transition later on. Note that

successively incrementing the integer value MAXCOUNT provides a means of unwinding computation trees by increasing

the depth of computation.

Next we shall describe how to set up the main module of an abstract pB machine using the transformation rules below.

4.2. Translating pB syntax

The pB translation to PRISM is straightforward and essentially involves constructing the guards to each guarded command

and the corresponding updates of each PRISM language statement. The idea is to encapsulate the essential behaviours of

a pB machine in the PRISM main module. Given the structure of the main module in Definition 5, we can achieve this

transformation for an abstract pB machine A, as follows:

• PRISM constants list:will be constructed fromA’s parameter list (if any) and its CONSTANTS clause. The type of a constant

is implicitly checked from the PROPERTIES clause.

• PRISM formula list: will be generated as atomic predicates from A’s PROPERTIES and INVARIANTS clauses.

• PRISM module name: will be A’s name.

• PRISM variables declaration and initial values list: will be constructed from each variable in the VARIABLES clause, its

type in the INVARIANT clause, and its initial values from the INITIALISATION clause. The lower and upper limits of the

variables are, respectively, the default lowest values of their types, and a bound specified from in PRISM constants list

(above).

4 This update statement is analogous to the skip programme.

U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45 35

Fig. 4. Encoding Expt as a PRISM reward allows us model check pBmachines using PCTL reward specifications of the form: Rmin≥E.s0 [F terminate] where E.s0 is

the safety threshold. Note that this reward is computable only after the T-labelled transition fires thus setting the future predicate terminate to truewhenever

(count = MAXCOUNT) holds.

• PRISM statements: each update statement is labelled with the distinct operation names from A’s OPERATION clause. In

addition,

(a) its guard is inherited from the guard of the operations in A’s OPERATIONS clause and strengthened by the formulas

in the PRISM formula list, such that

(b) the choice of formula selection is dependent on the expressions inA’s update statement. For each update, we check

that the formula-dependent expressions are included in the PRISM guard.

4.3. Encoding EXPECTATIONS clause as PRISM reward

The PRISM model checker permits models to be augmented with information about rewards. A reward structure essen-

tially assigns a non-negative real value worth to a state of a DTMC — an MDP whose nondeterminism has been resolved by

some scheduler. The tool can then analyse properties which relate to the expected value of the rewards if specified in the

temporal logic PCTL [16]. To further help us explore the usefulness of the T-labelled transition of the counter module we set

out the definitions below:

Definition 6. A transition reward is assigned to transitions of a DTMC by defining the reward function l : S × S → R≥0.

For example, the transition reward l(s, s′) is acquired each time a transition is enabled from state s to state s′ for all s, s′ ∈ S.

Definition 7. The reward specification Rmin∼E.s[F �] is true if from a state s the minimum expected reward accumulated

before reaching a state satisfying the future predicate � meets the bound ∼ E.s. We note here that R is a computed reward

value, ∼∈ {<, ≤, ≥, >}, E.s ∈ R≥0, and � is a PCTL state formula.

For anMDP, the reward specification inDefinition75 enablesus to inspect theexpectedvaluesof the rewardsaccumulated

in some future time over computation trees. To do this, we encode a T-labelled transition reward in our model using the

PRISM rewards . . . endrewards keywords (as in Fig. 4). Thus we can computeWp.(P � skip)MAXCOUNT.Expt.s0 by defining a

reward such that the instantaneous reward is always 0, whilst there is no accumulation part for any other transitions except

on the last stepwhen the T-labelled transition fires. This fully defines Expt(val(P)) for ourmodel as contained in Definition 5.

Finally, Fig. 5 illustrates this transformation — revealing the main module, its counter module and the reward structure

for the pB machine in Fig. 2. Recall that the unlabelled action corresponds to the “skip” programme (see Definition 5). The

complete algorithmic description to enable this transformation is set out in Fig. 13 of the Appendix.

In the next section, we shall explain more practical details on how we can obtain a scheduler violating reward specifica-

tions of the type we have discussed so far, i.e. with respect to PRISM’s reward structures.

4.4. Extracting an extremal scheduler

An extremal scheduler is a best (or worst-case) deterministic scheduler of the PRISM representation of an abstract faulty

pBmachine — i.e. one whose probability (or reward) of reaching a state where our intended reward specification is violated

is maximal (or minimal). On model checking the machine using PRISM’s sparse engine, 6 PRISM outputs this adversary in

a file named ‘adv.tra’ [24]. The file represents the resolution of the nondeterminism of a PRISM MDP which achieves the

extremal result.

But to do this, we first use the experiment facilities of PRISM to establish that indeed there is some MAXCOUNT (the least

one would do) for which the reward specification Rmin≥E.s0[F terminate] is not satisfied, that is, the safety threshold E.s0
has been violated. This can simply be done by using PRISM to explore the model — i.e. increasing MAXCOUNTwhile verifying

the specification until the safety threshold becomes violated. Thereafter, for that value of MAXCOUNT, PRISM outputs the

adversary file. However, to select the extremal scheduler, we analyse probabilistic transition matrices constructed from the

file using an additional state-value.txt file from themodel’s state space. The state-value.txt filemarks every state of thematrix

with (i) the valuation of the program’s variables occurring in the reward structure, and (ii) a corresponding action that is

5 Note that PRISM can only generate adversaries violating properties of this type.
6 As at the time of exploring this technique, only the sparse engine of the PRISM tool has been implemented to output the adv.tra file.

36 U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45

Fig. 5. This encoding allows us to model check the reward specification Rmin≥ 0 [F terminate]. However, if this specification fails to hold, we can then proceed

with obtaining an extremal scheduler that demonstrates the failure. Note that the padding withMAXCOUNT is to ensure that the PRISM engine is consistent with

computing positive rewards. Finally, we can achieve consistency by subtracting this parameter from the PRISM computed reward value.

enabled therein. By so doing, we establish an extremal scheduler as one that minimally (with respect to rewards) and max-

imally (with respect to probability) violates the threshold for safety for the given machine expectation Expt. As an example,

we note that the deterministic schedule in Fig. 3 corresponds to the extremal scheduler of the faulty pB machine in Fig. 2.

Since an extremal scheduler now corresponds to a failure tree, next we present a combination of algorithmic techniques

that will enable the presentation of precise diagnostic information sufficient to explain a violation of the inductive safety

specifications embedded within a pB machine EXPECTATIONS clause.

4.5. Computing failure traces

Following the construction of an extremal scheduler, we discuss a K-constrained k-shortest path algorithm, a variant

of Jiménez and Marzal’s REA [22] for identifying the faulty execution traces in the resultant failure tree. A key feature of

the algorithm is the use of the expectation transformer semantics for locating the faulty traces themselves. We recall from

Corollary 1 that any trace ending in the successor of a witness is an ideal candidate for a counterexample (i.e. if traced back

to the root of the tree from that successor). Therefore, summarising this semantic interpretation in a C-labelled procedure

(see Fig. 6), we have the following problem:

Traverse the depth of the failure tree and locate all the witnesses to failure — i.e. find states like s such that
Wp.P.Expt.s < Expt.s.

In the traversal the name of the original pB operation causing the transition is noted as well as the probability withwhich

the transition occurs. This allows a failure trace as a sequence of pB operations, together with the probability of the sequence

to be returned to the pB developer (as in Example 1).

In detail, theprocedure in Fig. 6 sets out a recursive strategy for computing the failure traces violating theproperty of inter-

est for a given extremal scheduler corresponding to a failure tree. It employs a breadth-first recursive search of all the states at

a given depth of a failure tree. On visiting any state s at a given depth k, we evaluateWp.(α.s � skip).Expt.s for amachine op-

erationα that is enabled at s and compare the computed value to its previous value Expt.s. Therefore, any state s at that depth
which strictly decreases its previous value as a result of the operation execution is then considered a witness to the failure.

On the other hand, Fig. 11 in the Appendix shows an algorithmic representation of the procedure to compute the most

useful diagnostic information for any given failure tree after the parameters k and K are initialised prior to the search. The

idea is that if we apply the algorithmic procedure over an extremal scheduler interpreted as a transition probability matrix,

then we can always compute all the failure traces at a minimal depth k of the tree.

4.6. Ranking faulty execution traces

The notion of ranking the faulty execution traces constituting the counterexamples will further make more sense to our

idea of themost useful diagnostic information required to debug apBmachine. Theneed todo this cannot be overemphasized

especially since the number of failure traces themselves may grow in the size of the state space of the faulty pB machines.

U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45 37

Fig. 6. A K-contrained k-shortest path procedure.

Fig. 12 I in the Appendix is an algorithmic interpretation for ranking the failure traces. Unlike standardmodel checkingwe

are also able to rank the failure traces in order of importance defined by appropriate metrics based on probability of occur-

renceor residual expectedvalues, i.e.Wp.P.Expt.s − Expt.s. Failure traceswithhighprobabilitymasses arepossiblymoreuse-

ful for debugging comparedwith oneswith lowprobabilitymasses. Dually, failure traceswhose expected values deviatemin-

imally from their thresholdswouldusually constitutemoreuseful diagnostic information than traces that deviatemaximally.

5. Automation and experiments

Given the algorithmic techniques and strategies discussed in the previous section, we have produced a prototype system

nicknamed YAGA which provides their implementation. We briefly describe YAGA in this section while referring readers to

[31] for a complete description.

5.1. YAGA: implementing the algorithmic techniques

YAGA [31] implements the collection of algorithms in the Appendix. It is a suite of programs for the performance analysis

of probabilistic systems development in the pB language. Most importantly, it allows a pBmachine designer to explore faulty

machine behaviours experimentally in order to ascertain the cause(s) of failure.

YAGA inputs a faulty pBmachine violating a specific safety property expressed in its EXPECTATIONS clause, and generates

its equivalent MDP representation in the PRISM language. On model checking the resultant PRISM file using the technique

discussed in the previous section, it constructs a transition probability matrix from an extremal scheduler output from the

PRISM tool.

Finally YAGA analyses the resultant failure tree using the technique set out in Fig. 6 to generate themost useful diagnostic

information composed of finite execution traces as sequences of actions and their state valuations leading from the initial

state of the pB machine to states where the property is violated.

5.2. Case study: faulty probabilistic library revisited

In [32] we used the translator facility of YAGA, and the PRISM tool to locate a faulty behaviour in a pBmachine (shown in

Fig.7)whichcaptures thebasicoperationsunderlying theaccountingpackageofa librarysystem[18]. In thatpaper,we formu-

lated a rewardpropertywhich enabledus to verify a safety feature of themachine.Moreover, our experimental investigations

revealed that the inclusion of a demonic “StockTake" operation (described within Fig. 7) in the library machine was respon-

sible for the violation of the specified safety feature. In this paper, we revisit that library example and further explain the

reasons behind the failure of themachine to observe its specified inductive safety property, i.e. after the operation inclusion.

The state of themachine has four variables: booksInLibrary, loansStarted, loansEnded and booksLostwhich are, respectively,

used to keep track of: the number of books in the library, the number of book loans initiated by the library, the number of

book loans completed by the library, and the number of books possibly never returned to the library.

Initially, themachinehastwooperations:StartLoan, to initiatea loanonabook,andEndLoan, to terminatethe loanofabook.

TheStartLoanoperationhasapreconditionthattherearebooksavailablefor loan; itdecrementsbooksInLibraryandincrements

loansStarted. When a book is returned, the EndLoan operation reverses the effect of the StartLoan operation by recording that

either the book “really is” returned, or is actually reported lost with some probability pp, so that booksLost is incremented.

38 U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45

Fig. 7. A pB machine describing the basic operations of a library system.

The inclusionof theStockTakeoperation is to enable a library accountantdoaperiodicbookkeepingof library transactions.

An appropriate specification of the library machine is the nondeterministic choice

Library � it (StartLoan � Endloan � StockTake) ti .

In the sections that follow, we shall investigate this machine design with respect to its EXPECTATIONS clause (boxed in

Fig. 7). That is, we shall assume that the machine provides an accurate representation of the library functionality and only

wish to investigate the inductiveness of the expression in its EXPECTATIONS clause with respect to the design.

5.2.1. Machine’s invariant inductive?

The machine’s EXPECTATIONS clause uses the random variable pp × loansEnded − booksLost to define an inductive in-

variant expression, i.e. Expt = pp × loansEnded − booksLost. The safety specification is such that: “the expected value of

pp × loansEnded − booksLost can never be decreased below 0” by the interleaved executions of the machine’s operations.

Interpreting this in our formalism, the machine must then guarantee that

Exp.[[Librarykℵ]].s0.Expt ≥ 0 (8)

for all execution step k and library scheduler ℵ. However, in [32] we saw that (8) was violated at the third execution step,

i.e. where k = 3, as depicted in Fig. 8 hence suggesting that Expt meets the second possibility discussed in Section 2 — it is

not inductive. But to find out why the inductive definition fails, we explore the capabilities of YAGA in the next section to

capture the machine’s exact execution sequence corresponding to an extremal scheduler which demonstrates the failure.

5.3. Experimental results

In our precursor paper [32] we explored the instantaneous variant of the PRISM reward structure to establish the faulty

behaviour of the library machine with respect to its safety specification. But here, we can explain the exact reasons to back

up that failure using the T-labelled transition reward encoding of the PRISM reward structures.

U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45 39

Fig. 8. Experiment over the EXPECTATIONS clause of Fig. 7.

Fig. 9. A YAGA diagnostic trace information report.

Again, Fig. 8 summarises our initial experimental investigation of the PRISMmodel of the faulty librarymachine described

in the previous section, after setting the model parameters as pp = 0.5, totalBooks = 1, cost = 1 and MAXCOUNT = 3. As we

shall see later, the counterexample identifies exactly which trace corresponds to the failure of the machine to observe its

inductive safety definition. The complete MDP PRISM model representation of the faulty library machine is in Fig. 14 of the

Appendix.

5.3.1. The most useful diagnostic trace located

After model checking the transformed safety property using the T-labelled transition step, YAGA constructs a failure tree

for our analysis.Moreover, given the techniqueof Section4, YAGA reports a faulty execution trace responsible for violating the

machine’s safety property. Fig. 9 shows a sample report output summarising the effect of YAGAon the resultant failure tree. It

gives a snapshot of the sequence of actions, after the machine initialisation INIT that constitute a faulty trace. This suggests

to the verifier that after executing the sequence ofmachine actions INIT, StartLoan, EndLoan awitness s is reachedwhere

the action StockTake is enabled and whose valuation captured by the pair (booksLost, loansEnded) = (0, 0) is such

thatWp.StockTake.(pp × loansEnded− booksLost).s (= 0) is strictly less than (pp × loansEnded− booksLost).s (=
pp = 0.5). YAGA then returns a complete diagnostic trace capturing this failure.

5.3.2. Diagnostic trace “expectations” information

Finally, YAGA ranks the faulty execution traces with respect to a verifier’s metric of interest. Note that since we only

have a single diagnostic trace whose probability information is given above, ranking it is does not portray much elegance.

Nevertheless, to complete a demonstration of the entire technique, we present a sample ranking report in Fig. 10.

40 U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45

Fig. 10. A YAGA diagnostic trace “expectations” information report.

6. Related work

McIver et al. [28,29] previously explored boundedmodel checking techniques to explain the failure of inductive invariants

by casting the problem of computing a “refutation-of-safety” certificate for probabilistic systems. But what we have done

here is to state more succinctly that the existence of a certificate corresponds to an inductive invariant failure in our own

context of safety. More importantly, we have also presented these certificates as useful information to a pB developer even

though it turns out that we have explored them in the form of probabilistic counterexamples.

Counterexample generation for probabilistic system models is quite a recent and burgeoning research discipline. Very

notable contributors in this field are Katoen and coworkers [14,15], Aljazzar et al. [4,5], and D’Argenio and coworkers [6,7].

While our work largely borrows from the advances made by these researchers and many more, it does specifically compare

to theirs as follows.

In [15] as in [32], we start off with the assumption that a certain unknown state violates a given PCTL temporal property.

In [15], Katoen and coworkers showed how to generate counterexamples for a reachability kind of property by computing

the set of prefix-containment free paths such that the sum of the probabilities along all paths exceed a given threshold over

the property.

But this approach in itself is very general. A major problem that arises then is: how dowe present system diagnostics to a

debugger in amanner that is not vague and difficult to digest? According to our formalism, it turns out that failure traces and

hence witnesses will suffice (see Definition 4). The usefulness of that definition is that we take away the burden of trying

to comprehend imprecise path information from the debugger and supply only debugging information that are essential to

addressing the main cause(s) of system failure.

However, a generalisation of [15] in our approach is the encoding of expected values of random variables as reward

structures. This then allows us to use path probabilities to investigate properties of the form P∼p[�≤k�] where the usual

box notation � will ensure � is a safety property. But key to doing this is that we can recast counterexamples for violating

a safety property to that for violating an equivalent reachability specification given the transformation rule: P∼p[�≤k�] ≡
¬P∼1−p[♦≤k¬�] where ♦ stands for eventuality. This homomorphic transformation allows us to reuse already existing

ideas to locate counterexamples by formulating a shortest path problem for deterministic schedulers ofMDP representations

of pB machines.

In comparison to [4,7], we are able to use the PRISM tool to extract a scheduler of the MDPwhose probability of reaching

our goal state (a state where � fails to hold) is maximal with respect the now transformed safety specification. This is

because we have encoded expectations as PRISM rewards. But while Aljazzar et al. [4] try to do this by computing the

maximum probability for a formulated scheduler compatibility problem over all possible schedulers of an MDP, D’Argenio

et al. [7] state that to do so follows an obvious result already established by de Alfaro [11] — that amaximising (deterministic

and memoryless) scheduler for an MDP can be extracted by solving a set of linear minimisation problem with respect to a

reachability property.

Finally, the idea of ranking counterexamples for probabilistic models is not new — D’Argenio et al. [7] have previously

explored this. But the notion of ranking counterexamples information for pBmachines cannot be overemphasized especially

since returning a large set of failure traces demonstrating the failure of amachine inductive safety propertywill only amount

to too much information for a debugger to digest. Consequently, a debugger can exercise the right to rank counterexamples

information by the trace total probability mass or the residual expectation. This helps to further bring to focus the first point

of machine repair.

7. Conclusion and future work

In this paper, we have presented a theoretical approach as well as its automation for the generation of counterexamples

treated as failure traces for simple inductive safety properties for systems development in pB. Our technique relies on the

assumption that embedding an inductive invariant within the EXPECTATIONS clause of an ‘accurate’ pB machine suffices

to initiate the output of a failure trace which demonstrates its violation (if it does exist). Note that our approach does not

distinguish between internal and external nondeterminism arising from the fact that pB itself is a specification language.

But whenever explicitly captured in a system specification, then our method can provide an equivalent interpretation.

U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45 41

In Section 2,we identified two possible causes for the failure of a proof obligation generator to discharge proofs. Thiswork

has focused on the second possibility — we aim to disprove the inductiveness of an expression representing expectations

provided that the underlying pB machine gives an accurate system representation. An interesting future extension of this

work will be to explore the complementary scenario. That is, whether or not we can use a correct inductive safety definition

of a pB machine for bug detection. This is particularly interesting since it will guarantee a full coverage of issues relating to

the completeness of our approach rather than just a subset of it.

The elegance of our technique is in its strength to guarantee a failure trace as an evidence for the failure of inductiveness

of a safety property. And in the case where multiple failure traces exist, we can drill-drown to finer levels of expectations

or probability details using our proposed ranking methodology. In general, the approach is aimed at presenting digestible

diagnostic information to a pB developer in a very simplified and friendly manner.

Finally, on a large scale, our technical approach is targeted at developing a performance analysis suite of programs for

industrial strength safety-critical probabilistic systems construction extending the RODIN platform [2].

Acknowledgements

The author is grateful to his Ph.D. thesis advisor, A.K. McIver for her very useful comments on the early drafts of this

paper. The author is also thankful to Dave Parker of the Oxford University Computing Laboratory for the very useful email

exchanges that have helped the development of the paper. Finally, the author expresses his profound gratitude to the anony-

mous reviewers.

Appendix

Fig. 11. Counterexample algorithm.

42 U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45

Fig. 12. Ranking and computepath algorithms. (I) Ranking algorithm: The input parameter to the algorithm is a ranking parameter index rankParamIndex. (II)

Computepath algorithm: The input parameters rrIndex, ccIndex, pr and T are passed after a call from the main algorithm counterexamplegenerator.

U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45 43

Fig. 13. An algorithmic description of YAGA’s pB machine translation

44 U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45

Fig. 14. A YAGA-Generated PRISM Representation of Fig. (7)

References

[1] J.R. Abrial, The B-Book: Assigning Programs to Meaning, Cambridge University Press, 1996.

[2] J.-R. Abrial, M.J. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, L. Voisin, Rodin: an open toolset for modelling and reasoning in event-B, STTT 12 (6) (2010)

447–466.
[3] J.R. Abrial, Modeling in Event-B: System and Software Engineering, Cambridge University Press, in press.

[4] H. Aljazzar, S. Leue, Generation of counterexamples for model checking of markov decision processes, QEST, IEEE Computer Society, 2009, pp. 197–206.
[5] H. Aljazzar, H. Hermanns, S. Leue, Counterexamples for timed probabilistic reachability, in: P. Pettersson, W. Yi (Eds.), FORMATS, Lecture Notes in Computer

Science, vol. 3829, Springer, 2005, pp. 177–195.
[6] M.E. Andrés, P. D’Argenio, Derivation of counterexamples for quantitative model checking, Master’s thesis, Universidad Nacional de Córdoba, Argentina,

2006.
[7] M.E Andrés, P.R. D’Argenio, P. van Rossum, Significant diagnostic counterexamples in probabilistic model checking, in: H. Chockler, A.J. Hu (Eds.), Haifa

Verification Conference, Lecture Notes in Computer Science, vol. 5394, Springer, 2008, pp. 129–148.

[8] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu, Bounded model checking, Adv. Comput. 58 (2003) 118–149.
[9] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using branching-time temporal logic, in: D. Kozen (Ed.), Logic of Programs,

Lecture Notes in Computer Science, vol. 131, Springer, 1981, pp. 52–71.
[10] E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 1999.

[11] L. de Alfaro, Formal verification of probabilistic systems, Ph.D. thesis, Stanford University, USA, 2005.
[12] D. Eppstein, Finding the k shortest paths, SIAM J. Comput. 28 (2) (1998) 652–673.

[13] G.R. Grimmnett, D. Stirzaker, Probability and Random Processes, Oxford University Press, 1982.

[14] T. Han, J.-P. Katoen, Counterexamples in probabilistic model checking, in: O. Grumberg, M. Huth (Eds.), TACAS, Lecture Notes in Computer Science, vol. 4424,
Springer, 2007, pp. 72–86.

[15] T. Han, J.-P. Katoen, B. Damman, Counterexample generation in probabilistic model checking, IEEE Trans. Software Eng. 35 (2) (2009) 241–257.
[16] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability, Formal Asp. Comput. 6 (5) (1994) 512–535.

[17] A. Hinton, M.Z. Kwiatkowska, G. Norman, D. Parker, PRISM: A tool for automatic verification of probabilistic systems, in: H. Hermanns, J. Palsberg (Eds.),
TACAS, Lecture Notes in Computer Science, vol. 3920, Springer, 2006, pp. 441–444.

[18] T.S. Hoang, Z. Jin, K. Robinson, A.K. McIver, C.C. Morgan, Probabilistic invariants for probabilistic machines, in: D. Bert, J.P. Bowen, S. King, M.A.Waldén (Eds.),

ZB, Lecture Notes in Computer Science, vol. 2651, Springer, 2003, pp. 240–259.

U. Ndukwu / Journal of Logic and Algebraic Programming 81 (2012) 26–45 45

[19] T.S. Hoang, Developing a robabilistic B-method and a supporting toolkit, Ph.D. thesis, University of New South Wales, Australia, 2005.
[20] C.A.R. Hoare, An axiomatic basis for computer programming, Commun. ACM 12 (10) (1969) 576–580.

[21] J. Hurd, Formal verification of probabilistic algorithms, Ph.D. thesis, University of Cambridge, United Kingdom, 2002.
[22] V.M. Jiménez, A. Marzal, Computing the k shortest paths: a new algorithm and an experimental comparison, in: J.S. Vitter, C.D. Zaroliagis (Eds.), Algorithm

Engineering, Lecture Notes in Computer Science, vol. 1668, Springer, 1999, pp. 15–29.

[23] M.Z. Kwiatkowska, G. Norman, D. Parker, Stochastic model checking, in: M. Bernardo, J. Hillston (Eds.), SFM, Lecture Notes in Computer Science, vol. 4486,
Springer, 2007, pp. 220–270.

[24] M.Z. Kwiatkowska, G. Norman, D. Parker, PRISM: probabilistic model checking for performance and reliability analysis, SIGMETRICS Perform. Evaluation
Rev. 36 (4) (2009) 40–45.

[25] M. Leuschel, M.J Butler, ProB: A model checker for B, in: K. Araki, S. Gnesi, D. Mandrioli (Eds.), FME, Lecture Notes in Computer Science, vol. 2805, Springer,
2003, pp. 855–874.

[26] D.A. Martin, Borel determinacy, Ann. Math. 102 (2) (1975) 363–371.

[27] A.K. McIver, C.C. Morgan, Abstraction, refinement and proof for probabilistic systems, Monographs in Computer Science, Springer-Verlag, 2004..
[28] A.K. McIver, C.C. Morgan, C. Gonzalia, Proofs and refutations for probabilistic refinement, vol. 5014in: J. Cuéllar, T.S.E. Maibaum, K. Sere (Eds.), FM, Lecture

Notes in Computer Science, , Springer, 2008, pp. 100–115.
[29] A.K. McIver, C.C. Morgan, C. Gonzalia, Probabilistic affirmation and refutation: case studies, in: Proceedings of Automatic Program Verification, 2009.

[30] C.C. Morgan, The generalised substitution language extended to probabilistic programs, vol. 1393in: D. Bert (Ed.), Lecture Notes in Computer Science, ,
Springer, 1998, pp. 9–25.

[31] U. Ndukwu, A.K. McIver, YAGA: Automated analysis of quantitative safety specifications in probabilistic B, vol. 6252in: A. Bouajjani, W.-N. Chin (Eds.), ATVA,

Lecture Notes in Computer Science, , Springer, 2010, pp. 378–386.
[32] U. Ndukwu, Quantitative safety: Linking proof-based verificationwithmodel checking for probabilistic systems, in: S. Andova, A. McIver, P.R. D’Argenio, P.J.L.

Cuijpers, J. Markovski, C. Morgan, M. Núñez (Eds.), QFM, EPTCS, vol. 13, 2009, pp. 27–39.
[33] PRISM: Probabilistic symbolic model checker. Available from: <http://www.prismmodelchecker.org/>

[34] M.L. Puterman, Markov Decision Processes, Wiley, 1994.
[35] J.-P. Queille, J. Sifakis, Specification and verification of concurrent systems in CESAR, vol. 137in: M. Dezani-Ciancaglini, U. Montanari (Eds.), Symposium on

Programming, Lecture Notes in Computer Science, , Springer, 1982, pp. 337–351.

http://www.prismmodelchecker.org/

	Generating counterexamples for quantitative safety specifications in probabilistic B
	1 Introduction
	1.1 Summary of notation

	2 Probabilistic annotations
	2.1 Probabilistic safety in pB

	3 EXPECTATIONS as probabilistic safety in MDPs
	3.1 Distributions over execution traces

	4 Extraction and presentation of counterexamples
	4.1 Generating PRISM models of abstract pB machines
	4.2 Translating pB syntax
	4.3 Encoding EXPECTATIONS clause as PRISM reward
	4.4 Extracting an extremal scheduler
	4.5 Computing failure traces
	4.6 Ranking faulty execution traces

	5 Automation and experiments
	5.1 YAGA: implementing the algorithmic techniques
	5.2 Case study: faulty probabilistic library revisited
	5.3 Experimental results

	6 Related work
	7 Conclusion and future work
	Acknowledgements
	Appendix
	References

