3 research outputs found

    An Effective Verification Solution for Modern Microprocessors.

    Full text link
    Over the past four decades microprocessors have come to be a vital and inseparable part of the modern world, becoming the digital brain of numerous electronic devices and gadgets that make today's lifestyle possible. Processors are capable of performing computation at astonishingly high speeds and are extremely integrated, occupying only a few square centimeters of silicon die. However, this computational power comes at a price: the task of verifying a modern microprocessor and guaranteeing correctness of its operation is increasingly challenging, even for most established processor vendors. Always attempting to deliver higher performance to end-users, processor manufacturers are forced to design progressively more complex circuits and employ immense verification teams to eliminate critical design bugs in a timely manner. Unfortunately, too often size doesn't seem to matter in verification, as schedules continue to slip and microprocessors find their way to the marketplace with design errors. This work describes a novel verification framework targeting specifically today's complex microprocessors. The scope of the work spans many levels of verification and different phases of the processor life-cycle, from validation of individual sub-modules to complete multi-core system, and from pre-silicon design verification to in-the-field hardware patching. In particular, our StressTest and MCjammer approaches enable efficient generation of high-quality tests at the pre-silicon level for individual cores and multi-core systems, respectively, using machine learning techniques and making the process as automatic as possible. On the other hand, Reversi and Dacota enable low cost validation in post-silicon, while delivering even higher coverage than pre-silicon techniques. Finally, the Field-repairable control logic (FRCL) and Caspar techniques allow designers to patch different classes of escaped errors in processors that are deployed in the field. The integrated set of solutions that we introduce with this thesis empowers processor vendors to drastically shorten their development timeline and, at the same time, to deliver more reliable and correct systems to their customers at a lower cost. Altogether, this work has the potential to solve the long-standing challenge of guaranteeing the complete functional correctness of modern microprocessors.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/61656/1/ivagner_1.pd

    Nova combinação de hardware e de software para veículos de desporto automóvel baseada no processamento directo de funções gráficas

    Get PDF
    Doutoramento em Engenharia EletrónicaThe main motivation for the work presented here began with previously conducted experiments with a programming concept at the time named "Macro". These experiments led to the conviction that it would be possible to build a system of engine control from scratch, which could eliminate many of the current problems of engine management systems in a direct and intrinsic way. It was also hoped that it would minimize the full range of software and hardware needed to make a final and fully functional system. Initially, this paper proposes to make a comprehensive survey of the state of the art in the specific area of software and corresponding hardware of automotive tools and automotive ECUs. Problems arising from such software will be identified, and it will be clear that practically all of these problems stem directly or indirectly from the fact that we continue to make comprehensive use of extremely long and complex "tool chains". Similarly, in the hardware, it will be argued that the problems stem from the extreme complexity and inter-dependency inside processor architectures. The conclusions are presented through an extensive list of "pitfalls" which will be thoroughly enumerated, identified and characterized. Solutions will also be proposed for the various current issues and for the implementation of these same solutions. All this final work will be part of a "proof-of-concept" system called "ECU2010". The central element of this system is the before mentioned "Macro" concept, which is an graphical block representing one of many operations required in a automotive system having arithmetic, logic, filtering, integration, multiplexing functions among others. The end result of the proposed work is a single tool, fully integrated, enabling the development and management of the entire system in one simple visual interface. Part of the presented result relies on a hardware platform fully adapted to the software, as well as enabling high flexibility and scalability in addition to using exactly the same technology for ECU, data logger and peripherals alike. Current systems rely on a mostly evolutionary path, only allowing online calibration of parameters, but never the online alteration of their own automotive functionality algorithms. By contrast, the system developed and described in this thesis had the advantage of following a "clean-slate" approach, whereby everything could be rethought globally. In the end, out of all the system characteristics, "LIVE-Prototyping" is the most relevant feature, allowing the adjustment of automotive algorithms (eg. Injection, ignition, lambda control, etc.) 100% online, keeping the engine constantly working, without ever having to stop or reboot to make such changes. This consequently eliminates any "turnaround delay" typically present in current automotive systems, thereby enhancing the efficiency and handling of such systems.A principal motivação para o trabalho que conduziu a esta tese residiu na constatação de que os actuais métodos de modelação de centralinas automóveis conduzem a significativos problemas de desenvolvimento e manutenção. Como resultado dessa constatação, o objectivo deste trabalho centrou-se no desenvolvimento de um conceito de arquitectura que rompe radicalmente com os modelos state-of-the-art e que assenta num conjunto de conceitos que vieram a ser designados de "Macro" e "Celular ECU". Com este modelo pretendeu-se simultaneamente minimizar a panóplia de software e de hardware necessários à obtenção de uma sistema funcional final. Inicialmente, esta tese propõem-se fazer um levantamento exaustivo do estado da arte na área específica do software e correspondente hardware das ferramentas e centralinas automóveis. Os problemas decorrentes de tal software serão identificados e, dessa identificação deverá ficar claro, que praticamente todos esses problemas têm origem directa ou indirecta no facto de se continuar a fazer um uso exaustivo de "tool chains" extremamente compridas e complexas. De forma semelhante, no hardware, os problemas têm origem na extrema complexidade e inter-dependência das arquitecturas dos processadores. As consequências distribuem-se por uma extensa lista de "pitfalls" que também serão exaustivamente enumeradas, identificadas e caracterizadas. São ainda propostas soluções para os diversos problemas actuais e correspondentes implementações dessas mesmas soluções. Todo este trabalho final faz parte de um sistema "proof-of-concept" designado "ECU2010". O elemento central deste sistema é o já referido conceito de “Macro”, que consiste num bloco gráfico que representa uma de muitas operações necessárias num sistema automóvel, como sejam funções aritméticas, lógicas, de filtragem, de integração, de multiplexagem, entre outras. O resultado final do trabalho proposto assenta numa única ferramenta, totalmente integrada que permite o desenvolvimento e gestão de todo o sistema de forma simples numa única interface visual. Parte do resultado apresentado assenta numa plataforma hardware totalmente adaptada ao software, bem como na elevada flexibilidade e escalabilidade, para além de permitir a utilização de exactamente a mesma tecnologia quer para a centralina, como para o datalogger e para os periféricos. Os sistemas actuais assentam num percurso maioritariamente evolutivo, apenas permitindo a calibração online de parâmetros, mas nunca a alteração online dos próprios algoritmos das funcionalidades automóveis. Pelo contrário, o sistema desenvolvido e descrito nesta tese apresenta a vantagem de seguir um "clean-slate approach", pelo que tudo pode ser globalmente repensado. No final e para além de todas as restantes características, o “LIVE-PROTOTYPING” é a funcionalidade mais relevante, ao permitir alterar algoritmos automóveis (ex: injecção, ignição, controlo lambda, etc.) de forma 100% online, mantendo o motor constantemente a trabalhar e sem nunca ter de o parar ou re-arrancar para efectuar tais alterações. Isto elimina consequentemente qualquer "turnaround delay" tipicamente presente em qualquer sistema automóvel actual, aumentando de forma significativa a eficiência global do sistema e da sua utilização
    corecore