4,411 research outputs found

    Generating binary partial Hadamard matrices

    Get PDF
    This paper deals with partial binary Hadamard matrices. Although there is a fast simple way to generate about a half (which is the best asymptotic bound known so far, see de Launey (2000) and de Launey and Gordon (2001)) of a full Hadamard matrix, it cannot provide larger partial Hadamard matrices beyond this bound. In order to overcome such a limitation, we introduce a particular subgraph Gt of Ito’s Hadamard Graph Δ(4t) (Ito, 1985), and study some of its properties,which facilitates that a procedure may be designed for constructing large partial Hadamard matrices. The key idea is translating the problem of extending a given clique in Gt into a Constraint Satisfaction Problem, to be solved by Minion (Gent et al., 2006). Actually, iteration of this process ends with large partial Hadamard matrices, usually beyond the bound of half a full Hadamard matrix, at least as our computation capabilities have led us thus far

    Searching for partial Hadamard matrices

    Get PDF
    Three algorithms looking for pretty large partial Hadamard ma- trices are described. Here “large” means that hopefully about a third of a Hadamard matrix (which is the best asymptotic result known so far, [8]) is achieved. The first one performs some kind of local exhaustive search, and consequently is expensive from the time consuming point of view. The second one comes from the adaptation of the best genetic algorithm known so far searching for cliques in a graph, due to Singh and Gupta [21]. The last one consists in another heuristic search, which prioritizes the required processing time better than the final size of the partial Hadamard matrix to be obtained. In all cases, the key idea is characterizing the adjacency properties of vertices in a particular subgraph Gt of Ito’s Hadamard Graph (4t) [18], since cliques of order m in Gt can be seen as (m + 3) × 4t partial Hadamard matrices.Ministerio de Ciencia e Innovación MTM2008-06578Junta de Andalucía FQM-016Junta de Andalucía P07-FQM-0298

    Qdensity - a Mathematica Quantum Computer Simulation

    Full text link
    This Mathematica 5.2 package~\footnote{QDENSITY is available at http://www.pitt.edu/~tabakin/QDENSITY} is a simulation of a Quantum Computer. The program provides a modular, instructive approach for generating the basic elements that make up a quantum circuit. The main emphasis is on using the density matrix, although an approach using state vectors is also implemented in the package. The package commands are defined in {\it Qdensity.m} which contains the tools needed in quantum circuits, e.g. multiqubit kets, projectors, gates, etc. Selected examples of the basic commands are presented here and a tutorial notebook, {\it Tutorial.nb} is provided with the package (available on our website) that serves as a full guide to the package. Finally, application is made to a variety of relevant cases, including Teleportation, Quantum Fourier transform, Grover's search and Shor's algorithm, in separate notebooks: {\it QFT.nb}, {\it Teleportation.nb}, {\it Grover.nb} and {\it Shor.nb} where each algorithm is explained in detail. Finally, two examples of the construction and manipulation of cluster states, which are part of ``one way computing" ideas, are included as an additional tool in the notebook {\it Cluster.nb}. A Mathematica palette containing most commands in QDENSITY is also included: {\it QDENSpalette.nb} .Comment: The Mathematica 5+ package is available at: http://www.pitt.edu/~tabakin/QDENSITY/QDENSITY.htm Minor corrections, accepted in Computer Physics Communication

    Improved Simulation of Stabilizer Circuits

    Full text link
    The Gottesman-Knill theorem says that a stabilizer circuit -- that is, a quantum circuit consisting solely of CNOT, Hadamard, and phase gates -- can be simulated efficiently on a classical computer. This paper improves that theorem in several directions. First, by removing the need for Gaussian elimination, we make the simulation algorithm much faster at the cost of a factor-2 increase in the number of bits needed to represent a state. We have implemented the improved algorithm in a freely-available program called CHP (CNOT-Hadamard-Phase), which can handle thousands of qubits easily. Second, we show that the problem of simulating stabilizer circuits is complete for the classical complexity class ParityL, which means that stabilizer circuits are probably not even universal for classical computation. Third, we give efficient algorithms for computing the inner product between two stabilizer states, putting any n-qubit stabilizer circuit into a "canonical form" that requires at most O(n^2/log n) gates, and other useful tasks. Fourth, we extend our simulation algorithm to circuits acting on mixed states, circuits containing a limited number of non-stabilizer gates, and circuits acting on general tensor-product initial states but containing only a limited number of measurements.Comment: 15 pages. Final version with some minor updates and corrections. Software at http://www.scottaaronson.com/ch

    On minors of maximal determinant matrices

    Full text link
    By an old result of Cohn (1965), a Hadamard matrix of order n has no proper Hadamard submatrices of order m > n/2. We generalise this result to maximal determinant submatrices of Hadamard matrices, and show that an interval of length asymptotically equal to n/2 is excluded from the allowable orders. We make a conjecture regarding a lower bound for sums of squares of minors of maximal determinant matrices, and give evidence in support of the conjecture. We give tables of the values taken by the minors of all maximal determinant matrices of orders up to and including 21 and make some observations on the data. Finally, we describe the algorithms that were used to compute the tables.Comment: 35 pages, 43 tables, added reference to Cohn in v

    Construction of a Large Class of Deterministic Sensing Matrices that Satisfy a Statistical Isometry Property

    Full text link
    Compressed Sensing aims to capture attributes of kk-sparse signals using very few measurements. In the standard Compressed Sensing paradigm, the \m\times \n measurement matrix \A is required to act as a near isometry on the set of all kk-sparse signals (Restricted Isometry Property or RIP). Although it is known that certain probabilistic processes generate \m \times \n matrices that satisfy RIP with high probability, there is no practical algorithm for verifying whether a given sensing matrix \A has this property, crucial for the feasibility of the standard recovery algorithms. In contrast this paper provides simple criteria that guarantee that a deterministic sensing matrix satisfying these criteria acts as a near isometry on an overwhelming majority of kk-sparse signals; in particular, most such signals have a unique representation in the measurement domain. Probability still plays a critical role, but it enters the signal model rather than the construction of the sensing matrix. We require the columns of the sensing matrix to form a group under pointwise multiplication. The construction allows recovery methods for which the expected performance is sub-linear in \n, and only quadratic in \m; the focus on expected performance is more typical of mainstream signal processing than the worst-case analysis that prevails in standard Compressed Sensing. Our framework encompasses many families of deterministic sensing matrices, including those formed from discrete chirps, Delsarte-Goethals codes, and extended BCH codes.Comment: 16 Pages, 2 figures, to appear in IEEE Journal of Selected Topics in Signal Processing, the special issue on Compressed Sensin
    • 

    corecore