1,310 research outputs found

    Learning understandable classifier models.

    Get PDF
    The topic of this dissertation is the automation of the process of extracting understandable patterns and rules from data. An unprecedented amount of data is available to anyone with a computer connected to the Internet. The disciplines of Data Mining and Machine Learning have emerged over the last two decades to face this challenge. This has led to the development of many tools and methods. These tools often produce models that make very accurate predictions about previously unseen data. However, models built by the most accurate methods are usually hard to understand or interpret by humans. In consequence, they deliver only decisions, and are short of any explanations. Hence they do not directly lead to the acquisition of new knowledge. This dissertation contributes to bridging the gap between the accurate opaque models and those less accurate but more transparent for humans. This dissertation first defines the problem of learning from data. It surveys the state-of-the-art methods for supervised learning of both understandable and opaque models from data, as well as unsupervised methods that detect features present in the data. It describes popular methods of rule extraction from unintelligible models which rewrite them into an understandable form. Limitations of rule extraction are described. A novel definition of understandability which ties computational complexity and learning is provided to show that rule extraction is an NP-hard problem. Next, a discussion whether one can expect that even an accurate classifier has learned new knowledge. The survey ends with a presentation of two approaches to building of understandable classifiers. On the one hand, understandable models must be able to accurately describe relations in the data. On the other hand, often a description of the output of a system in terms of its input requires the introduction of intermediate concepts, called features. Therefore it is crucial to develop methods that describe the data with understandable features and are able to use those features to present the relation that describes the data. Novel contributions of this thesis follow the survey. Two families of rule extraction algorithms are considered. First, a method that can work with any opaque classifier is introduced. Artificial training patterns are generated in a mathematically sound way and used to train more accurate understandable models. Subsequently, two novel algorithms that require that the opaque model is a Neural Network are presented. They rely on access to the network\u27s weights and biases to induce rules encoded as Decision Diagrams. Finally, the topic of feature extraction is considered. The impact on imposing non-negativity constraints on the weights of a neural network is considered. It is proved that a three layer network with non-negative weights can shatter any given set of points and experiments are conducted to assess the accuracy and interpretability of such networks. Then, a novel path-following algorithm that finds robust sparse encodings of data is presented. In summary, this dissertation contributes to improved understandability of classifiers in several tangible and original ways. It introduces three distinct aspects of achieving this goal: infusion of additional patterns from the underlying pattern distribution into rule learners, the derivation of decision diagrams from neural networks, and achieving sparse coding with neural networks with non-negative weights

    Prediction of protein-protein interaction types using association rule based classification

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Park et alBackground: Protein-protein interactions (PPI) can be classified according to their characteristics into, for example obligate or transient interactions. The identification and characterization of these PPI types may help in the functional annotation of new protein complexes and in the prediction of protein interaction partners by knowledge driven approaches. Results: This work addresses pattern discovery of the interaction sites for four different interaction types to characterize and uses them for the prediction of PPI types employing Association Rule Based Classification (ARBC) which includes association rule generation and posterior classification. We incorporated domain information from protein complexes in SCOP proteins and identified 354 domain-interaction sites. 14 interface properties were calculated from amino acid and secondary structure composition and then used to generate a set of association rules characterizing these domain-interaction sites employing the APRIORI algorithm. Our results regarding the classification of PPI types based on a set of discovered association rules shows that the discriminative ability of association rules can significantly impact on the prediction power of classification models. We also showed that the accuracy of the classification can be improved through the use of structural domain information and also the use of secondary structure content. Conclusion: The advantage of our approach is that we can extract biologically significant information from the interpretation of the discovered association rules in terms of understandability and interpretability of rules. A web application based on our method can be found at http://bioinfo.ssu.ac.kr/~shpark/picasso/SHP was supported by the Korea Research Foundation Grant funded by the Korean Government(KRF-2005-214-E00050). JAR has been supported by the Programme Alβan, the European Union Programme of High level Scholarships for Latin America, scholarship E04D034854CL. SK was supported by Soongsil University Research Fund

    Various Sequence Classification Mechanisms for Knowledge Discovery

    Get PDF
    Sequence classification is an efficient task in data mining. The knowledge obtained from training stage can be used for sequence classification that assigns class labels to the new sequences. Relevant patterns can be found by using sequential pattern mining in which the values are represented in sequential manner. Classification process has explicit features but these features are not found in sequences. Feature selection techniques are sophisticated, but the potential features dimensionality may be very high. It is hard to find the sequential nature of feature. Sequence classification is a more challenging task than feature vector classification. Sequence classification problem can be solved by rules that consist of interesting patterns. These patterns are found in datasets that have labeled sequences along with class labels. The cohesion and support of the pattern are used to define interestingness of a pattern. In a given class of sequences, interestingness of a pattern can be measured by combining these two factors. Confident classification rules can be generated by using the discovered patterns. Two different approaches to build a classifier are used. The first classifier consists of an advanced form of classification method that depends on association rule. In the second classifier, the value belonging to the new data object is first measured then the rules are ranked

    Software Defect Association Mining and Defect Correction Effort Prediction

    Get PDF
    Much current software defect prediction work concentrates on the number of defects remaining in software system. In this paper, we present association rule mining based methods to predict defect associations and defect-correction effort. This is to help developers detect software defects and assist project managers in allocating testing resources more effectively. We applied the proposed methods to the SEL defect data consisting of more than 200 projects over more than 15 years. The results show that for the defect association prediction, the accuracy is very high and the false negative rate is very low. Likewise for the defect-correction effort prediction, the accuracy for both defect isolation effort prediction and defect correction effort prediction are also high. We compared the defect-correction effort prediction method with other types of methods: PART, C4.5, and Na¨ıve Bayes and show that accuracy has been improved by at least 23%. We also evaluated the impact of support and confidence levels on prediction accuracy, false negative rate, false positive rate, and the number of rules. We found that higher support and confidence levels may not result in higher prediction accuracy, and a sufficient number of rules is a precondition for high prediction accuracy

    Investigating the Quality Aspects of Crowd-Sourced Developer Forum: A Case Study of Stack Overflow

    Get PDF
    Technical question and answer (Q&A) websites have changed how developers seek information on the web and become more popular due to the shortcomings in official documentation and alternative knowledge sharing resources. Stack Overflow (SO) is one of the largest and most popular online Q&A websites for developers where they can share knowledge by answering questions and learn new skills by asking questions. Unfortunately, a large number of questions (up to 29%) are not answered at all, which might hurt the quality or purpose of this community-oriented knowledge base. In this thesis, we first attempt to detect the potentially unanswered questions during their submission using machine learning models. We compare unanswered and answered questions quantitatively and qualitatively. The quantitative analysis suggests that topics discussed in the question, the experience of the question submitter, and readability of question texts could often determine whether a question would be answered or not. Our qualitative study also reveals why the questions remain unanswered that could guide novice users to improve their questions. During analyzing the questions of SO, we see that many of them remain unanswered and unresolved because they contain such code segments that could potentially have programming issues (e.g., error, unexpected behavior); unfortunately, the issues could always not be reproduced by other users. This irreproducibility of issues might prevent questions of SO from getting answers or appropriate answers. In our second study, we thus conduct an exploratory study on the reproducibility of the issues discussed in questions and the correlation between issue reproducibility status (of questions) and corresponding answer meta-data such as the presence of an accepted answer. According to our analysis, a question with reproducible issues has at least three times higher chance of receiving an accepted answer than the question with irreproducible issues. However, users can improve the quality of questions and answers by editing. Unfortunately, such edits may be rejected (i.e., rollback) due to undesired modifications and ambiguities. We thus offer a comprehensive overview of reasons and ambiguities in the SO rollback edits. We identify 14 reasons for rollback edits and eight ambiguities that are often present in those edits. We also develop algorithms to detect ambiguities automatically. During the above studies, we find that about half of the questions that received working solutions have negative scores. About 18\% of the accepted answers also do not score the maximum votes. Furthermore, many users are complaining against the downvotes that are cast to their questions and answers. All these findings cast serious doubts on the reliability of the evaluation mechanism employed at SO. We thus concentrate on the assessment mechanism of SO to ensure a non-biased, reliable quality assessment mechanism of SO. This study compares the subjective assessment of questions with their objective assessment using 2.5 million questions and ten text analysis metrics. We also develop machine learning models to classify the promoted and discouraged questions and predict them during their submission time. We believe that the findings from our studies and proposed techniques have the potential to (1) help the users to ask better questions with appropriate code examples, and (2) improve the editing and assessment mechanism of SO to promote better content quality

    Notions of explainability and evaluation approaches for explainable artificial intelligence

    Get PDF
    Explainable Artificial Intelligence (XAI) has experienced a significant growth over the last few years. This is due to the widespread application of machine learning, particularly deep learning, that has led to the development of highly accurate models that lack explainability and interpretability. A plethora of methods to tackle this problem have been proposed, developed and tested, coupled with several studies attempting to define the concept of explainability and its evaluation. This systematic review contributes to the body of knowledge by clustering all the scientific studies via a hierarchical system that classifies theories and notions related to the concept of explainability and the evaluation approaches for XAI methods. The structure of this hierarchy builds on top of an exhaustive analysis of existing taxonomies and peer-reviewed scientific material. Findings suggest that scholars have identified numerous notions and requirements that an explanation should meet in order to be easily understandable by end-users and to provide actionable information that can inform decision making. They have also suggested various approaches to assess to what degree machine-generated explanations meet these demands. Overall, these approaches can be clustered into human-centred evaluations and evaluations with more objective metrics. However, despite the vast body of knowledge developed around the concept of explainability, there is not a general consensus among scholars on how an explanation should be defined, and how its validity and reliability assessed. Eventually, this review concludes by critically discussing these gaps and limitations, and it defines future research directions with explainability as the starting component of any artificial intelligent system

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed
    • …
    corecore