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Abstract

Technical question and answer (Q&A) websites have changed how developers seek information on the

web and become more popular due to the shortcomings in official documentation and alternative knowledge

sharing resources. Stack Overflow (SO) is one of the largest and most popular online Q&A websites for

developers where they can share knowledge by answering questions and learn new skills by asking questions.

Unfortunately, a large number of questions (up to 29%) are not answered at all, which might hurt the

quality or purpose of this community-oriented knowledge base. In this thesis, we first attempt to detect

the potentially unanswered questions during their submission using machine learning models. We compare

unanswered and answered questions quantitatively and qualitatively. The quantitative analysis suggests that

topics discussed in the question, the experience of the question submitter, and readability of question texts

could often determine whether a question would be answered or not. Our qualitative study also reveals

why the questions remain unanswered that could guide novice users to improve their questions. During

analyzing the questions of SO, we see that many of them remain unanswered and unresolved because they

contain such code segments that could potentially have programming issues (e.g., error, unexpected behavior);

unfortunately, the issues could always not be reproduced by other users. This irreproducibility of issues might

prevent questions of SO from getting answers or appropriate answers. In our second study, we thus conduct

an exploratory study on the reproducibility of the issues discussed in questions and the correlation between

issue reproducibility status (of questions) and corresponding answer meta-data such as the presence of an

accepted answer. According to our analysis, a question with reproducible issues has at least three times

higher chance of receiving an accepted answer than the question with irreproducible issues. However, users

can improve the quality of questions and answers by editing. Unfortunately, such edits may be rejected (i.e.,

rollback) due to undesired modifications and ambiguities. We thus offer a comprehensive overview of reasons

and ambiguities in the SO rollback edits. We identify 14 reasons for rollback edits and eight ambiguities that

are often present in those edits. We also develop algorithms to detect ambiguities automatically. During

the above studies, we find that about half of the questions that received working solutions have negative

scores. About 18% of the accepted answers also do not score the maximum votes. Furthermore, many

users are complaining against the downvotes that are cast to their questions and answers. All these findings

cast serious doubts on the reliability of the evaluation mechanism employed at SO. We thus concentrate

on the assessment mechanism of SO to ensure a non-biased, reliable quality assessment mechanism of SO.

This study compares the subjective assessment of questions with their objective assessment using 2.5 million

questions and ten text analysis metrics. We also develop machine learning models to classify the promoted

and discouraged questions and predict them during their submission time.

We believe that the findings from our studies and proposed techniques have the potential to (1) help the

users to ask better questions with appropriate code examples, and (2) improve the editing and assessment

mechanism of SO to promote better content quality.
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1 Introduction

1.1 Motivation

The online crowd-sourced developer forums such as Stack Overflow (SO) are becoming increasingly important

and popular to software developers and practitioners due to the shortcomings in traditional and official

knowledge resources [67, 99, 132]. SO has shaped the way developers search for solutions on the web for

their programming related issues [93]. It has become a valuable knowledge base accumulating millions of

questions and answers. It has more than 11 million registered users as of December 2019 [87]. Each user can

ask questions or respond to questions by posting answers. The growth and continued success of SO depends

on two major factors, the participation of users and the quality of the shared knowledge [6, 57, 89]. However,

despite having such a large and engaged community, about 29% (in the year 2018) of SO questions are not

answered at all [87]. Besides, this percentage has been gradually increasing over the years [87]. Such a large

number of unanswered questions might devalue the quality and purpose of the community-oriented knowledge

base. Users of SO do not know either the questions will be answered or not during their submission. Detection

of the potentially unanswered questions in advance during question submission could help one improve the

question and thus receive the answers in time.

A large number of questions of SO discuss code issues (e.g., error and unexpected behavior) [9, 127].

Users often submit their questions with sample code examples to support their issue descriptions. Users of

SO generally attempt to reproduce the programming issues discussed in the questions and then submit their

solutions. Unfortunately, users could not always reproduce the programming issues, which might prevent

these questions from getting prompt answers or answers at all. Users face several challenges in reproducing

the issues reported at SO questions. Exploring these challenges guides the users to include appropriate code

segments with their questions that could help them be answered and resolved.

SO also allows the users to improve the questions and answers by editing. In particular, editing helps to

keep questions and answers clear, relevant, and up-to-date by fixing grammar and spelling mistakes, clarifying

the meaning, and adding related resources or hyperlinks. Li et al. [58] found that such collaborative editing

increases the possibility of getting answers and also increase the score of questions and answers. However,

such edits can be rejected due to the undesired modification of questions and answers. Therefore, it is

important to understand why a suggested edit is being rejected and whether such edits may be prone to

underlying ambiguities due to the lack of proper guidelines or proliferation of subjective bias.

While analyzing the questions, answers, and their quality, we see several counter-intuitive findings on the
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reliability of the evaluation mechanism of SO. For example, about 48% of the questions that received working

solutions have negative scores, about 18% of the accepted answers (i.e., verified solutions) also fail to receive

the maximum votes among all answers in a Q&A thread [87]. The users of SO are also often disappointed

by the evaluation against their questions and answers. All these findings above suggest the highly subjective

nature of the votes cast by the users in SO. Furthermore, several previous studies also show that the incentive

systems of Q&A sites may always not positively drive by certain users. For example, opportunistic users

(i.e., users greedy to increase reputation in any way) may find loopholes and aggressively game the system

for their advantage [47, 52, 134]. To ensure a non-biased, reliable quality assessment mechanism of SO, a

verification of the subjective evaluation is thus highly warranted.

1.2 Research Problem

A number of existing studies [5, 20, 102] are conducted to investigate the unanswered questions of SO.

Asaduzzaman et al. [5] qualitatively analyze a total of 400 questions of SO and then report 13 factors (e.g.,

proprietary technology, irregular users) that might explain why the questions remain unanswered. However,

many of their reported characteristics (e.g., impatient users) are hard to measure in practice. Saha et al.

[102] introduce machine learning models to classify answered and unanswered questions. Unfortunately, the

majority of their strong features (e.g., view count, score) are not available during the submission of a question.

Thus, their model might not be able to predict the unanswered questions reliably during their submission.

Calefato et al. [20] study such factors that might increase the chance of getting accepted answers to the

SO questions. They suggest that high-quality presentation (e.g., body length), positive sentiment, question

submission in weekdays, and high user reputation might improve the chance of getting answers. However,

when they were analyzed none of these factors (except user reputation) was found powerful to reliably predict

the unanswered questions during their submission. In short, the prediction of the unanswered questions is

an open research problem that warrants further investigation.

Several existing studies [46, 147] investigate the usability and executability of the code segments posted on

Q&A sites. Yang et al. [147] extract 914,974 code segments from the accepted answers of SO and analyze their

parsability and compilability. However, their analysis was completely automatic, and they did not address

the challenges of issue reproducibility. Horton and Parnin [46] analyze the executability of the Python code

segments found on the GitHub Gist system. They identify several flaws (e.g., import error, syntax errors,

indentation error) that prevent the execution of such code segments. However, a simple execution success

of the code does not necessarily guarantee the reproduction of the issues discussed at SO questions. Thus,

their approach also fails to address the reproducibility challenges that we are dealing with. Thus, there is a

marked lack of research that investigates the challenges of issue reproducibility (of SO questions) and how

reproducibility of issues affect the quality of SO questions.

Quality improvement of questions and answers posted in SO by editing were subject to a recent study
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by Wang et al. [134]. According to their investigation, a suggested edit was rejected for 12 reasons such

as incorrect code change, undesired code/text formatting, and so on. Unfortunately, undesired code/text

formatting could be prone to subjective bias. For example, two edits that suggest putting similar code terms

(e.g., API names) into a code block < code >< /code >. However, the first suggested edit is approved, while

the second one was rejected. Such observation leads to the question of how users are reviewing suggested edits

and whether their judgment is clouded by individual bias. Lack of rules coupled with individual subjective

bias could create ambiguity between the content owner and the users who suggested the edit. Such ambiguity

may create confusion, frustrate the users, and dissuade the users from further contributing upon a rejection.

Besides investigating rejection reasons for edits, it is thus necessary to understand the specific ambiguities

that may be present in the rollback edits and use that to guide both forum designers and users. We are not

aware of any previous study that analyzed ambiguities in SO rollback edits.

Several existing studies [18, 30, 79, 126] investigate questions and answers of SO and attempt to assess

their quality. Nasehi et al. [79] analyze the quality of code segments included in SO posts and study the

aspects that make up a good code example. Treude and Robillard [126] investigate to what extent developers

perceive such code examples as self-explanatory. The appropriateness of code explanation is further studied

by Ercan et al. [30] using Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [36]. Calefato et al.

[18] focuses on the four light-weight, user-oriented features (e.g., user reputation) to predict the high-quality

answers from technical Q&A sites. Novielli et al. [80] argue that the emotional style of a technical question

could be a quality aspect that might influence the answering time of the question. Thus, the above studies

simply rely on light-weight, ad-hoc attributes to estimate a post’s quality. A few other studies [29, 93, 94]

attempt to separate up-voted questions from down-voted questions using both the subjective (e.g., user

reputation) and objective (e.g., text readability) metrics. While our work overlaps with them in terms of

methodology, our research goals are different. In particular, we attempt to verify whether the subjective

evaluation makes sense and the high-scored (hereby, promoted) questions on SO are actually preferable to

the low-scored (hereby, discouraged) ones in terms of different objective quality metrics.

Thus the research problems we attempt to solve in this thesis have effective and diversified use to improve

both the quality of content and assessment mechanism of SO.

1.3 Addressing Research Problems

The previous section briefly describes the systematic investigation that helps to identify the research problems

on the quality of SO posts, their assessment and editing system, and also provides hints of their solutions.

The following four studies have been conducted in total to address the above-mentioned problems.

• Study 1: Early Detection and Guidelines to Improve Unanswered Questions on SO

• Study 2: Can Issues Reported at SO Questions be Reproduced? An Exploratory Study
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• Study 3: Rollback Edit Reasons and Ambiguities in SO

• Study 4: Do Subjectivity and Objectivity Always Agree? A Case Study with SO Questions

The following subsections briefly describe each of these studies.

1.3.1 Study 1: Early Detection and Guidelines to Improve Unanswered Ques-

tions on SO

In this study, we compare unanswered and answered questions quantitatively and qualitatively by analyzing

a total of 4.8 million questions from SO. We find that topics discussed in the question, the experience of

the question submitter, and readability of question texts could often determine whether a question would be

answered or not. Our qualitative study also reveals several other non-trivial factors that not only explain

(partially) why the questions remain unanswered but also guide the novice users to improve their questions.

We develop four machine learning models to predict the unanswered questions during their submission.

According to the experiments, our models predict the unanswered questions with a maximum of about 79%

accuracy and significantly outperform the state-of-the-art prediction models.

1.3.2 Study 2: Can Issues Reported at Stack Overflow Questions be Repro-

duced? An Exploratory Study

In this study, we report an exploratory study on the reproducibility of the issues discussed in 400 questions

of SO related to Java programming language. In particular, we parse, compile, execute and even carefully

examine the code segments from these questions, spent a total of 200 man-hours, and then attempt to

reproduce their programming issues. The outcomes of our study are two-fold. First, we find that 68% of the

code segments require minor and major modifications to reproduce the issues reported by the developers.

On the contrary, 22% code segments completely fail to reproduce the issues. We also carefully investigate

why these issues could not be reproduced and then provide evidence-based guidelines for writing effective

code examples for SO questions. Second, we investigate the correlation between issue reproducibility status

(of questions) and corresponding answer meta-data, such as the presence of an accepted answer. According

to our analysis, a question with reproducible issues has at least three times higher chance of receiving an

accepted answer than the question with irreproducible issues.

1.3.3 Study 3: Rollback Edit Reasons and Ambiguities in Stack Overflow

In this study, we offer, for the first time, a comprehensive overview of reasons and ambiguities in the SO

rollback edits. Through an exhaustive qualitative analysis of 1,532 SO rollback and approved edits, we identify

14 reasons for rollback edits in SO and eight types of ambiguities that are often present in those edits. To

analyze the prevalence of the ambiguities in SO, we develop a suite of algorithms to detect the ambiguities
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automatically. We ran our algorithms on around 102K SO rollback edits. We observe that presentation

ambiguity is the most prevalent, which arises due to confusion among developers on how to present content

(e.g., code terms). We also see that temporal ambiguities are rapidly increasing in SO, which arises when

multiple already approved edits to a post got rejected due to a newer suggested edits - which is then rejected,

rendering the valuable contributions of the approved edits useless. Our findings offer both qualitative and

quantitative evidence on how SO’s editing mechanism should be improved to promote better content quality.

1.3.4 Study 4: Do Subjectivity and Objectivity Always Agree? A Case Study

with Stack Overflow Questions

In this study, we compare the subjective assessment of questions with their objective assessment using 2.5

million questions and ten text analysis metrics. According to our investigation, (1) four objective metrics

agree, (2) two metrics do not agree, and (3) one metric either agrees or disagrees with the subjective eval-

uation. We develop machine learning models to classify the promoted and discouraged questions, and also

to predict them during their submission time. Our models outperform the state-of-the-art models with a

maximum of about 76%–87% accuracy.

1.4 Related Publications

Below is the list of publications and the works that are prepared for submission (with collaborator) from this

thesis.

• Saikat Mondal, Mohammad Masudur Rahman, and Chanchal K. Roy. Can Issues Reported at Stack

Overflow Questions be Reproduced? An Exploratory Study. International Conference on Mining

Software Repositories (MSR), 2019 pp. 479-489.

• Saikat Mondal, Gias Uddin, and Chanchal K. Roy. Automatic Identification of Rollback Edit with

Reasons in Stack Overflow Q&A Site. International Conference on Software Maintenance and Evolution

(ICSME), 2020 (accepted)

• Saikat Mondal, Gias Uddin, and Chanchal K. Roy. Rollback Edit Reasons and Ambiguities in Stack

Overflow. International Conference on Automated Software Engineering (ASE), 2020. (under review).

• Saikat Mondal, Mohammad Masudur Rahman, and Chanchal K. Roy. Do Subjectivity and Objectivity

Always Agree? A Case Study with Stack Overflow Questions. Journal of Systems and Software (JSS)

(Under revise and resubmit)

• Saikat Mondal, C M Khaled Saifullah, Avijit Bhattacharjee, Mohammad Masudur Rahman, and Chan-

chal K. Roy. Early Detection and Guidelines to Improve Unanswered Questions on Stack Overflow.

Journal of Systems and Software (JSS) (to be submitted)
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1.5 Outline of the Thesis

The thesis contains seven chapters in total. In order to evaluate the quality of both the content and assessment

mechanism of SO, we conduct four independent but interrelated studies and this section outlines different

chapters of the thesis.

• Chapter 2 discusses the background concepts of this thesis such as Quality Assessment Mechanism of

Posts of SO, edit system of SO, machine learning algorithms (e.g., random forest), Recall-Oriented

Understudy for Gisting Evaluation (ROUGE) and so on.

• Chapter 3 discusses the first study that proposes an early detection technique of unanswered questions

of SO and also guides users to improve their questions.

• Chapter 4 discusses the challenges to reproduce the issues reported in the questions of SO using the code

segments included in the questions, and also investigates the relationship between the reproducibility

status issues and answer meta-data.

• Chapter 5 discusses the rollback edit reasons and ambiguities in SO and also proposes algorithms to

detect ambiguities automatically.

• Chapter 6 compares the subjective assessment of SO questions with their objective assessment using

millions of questions and text analysis metrics and proposes machine learning techniques to classify

promoted (i.e., high-quality) and discouraged (i.e., low-quality) questions.

• Chapter 7 concludes the thesis with a list of directions for future works.

6



2 Background

In this chapter, we provide a short discussion of the background and technical preliminaries to follow

the remaining of the thesis. Section 2.1 discusses the question answering technique of SO and the different

components of questions, Section 2.2 and Section 2.3 discuss the quality assessment and editing mechanism of

SO, Section 2.4 describes the machine learning algorithms (e.g., decision trees, random forest) that employed

in this thesis, Section 2.6 discusses the statistical significance tests (e.g., MWW test), Section 2.7 defines

ROUGE that determines the quality of a text summary by comparing it to the summaries created by humans,

and finally, Section 2.8 summarizes the chapter.

2.1 Question Answering on Stack Overflow

SO is an online community-based platform for question-answering in the domain of computer programming

[149]. Users can post their questions about programming that are tightly focused on a specific problem [143].

A question has three components, namely, title, body, and tags. The title summarizes the problem, whereas

tags represent the topics related to the discussed problems. The body contains the textual description of

the problems. Users often include code segments inside the body to support the explanation of the problem.

Once a question is submitted by a user, others (i.e., answerers) can respond to this question by posting

answers. When a question asker is satisfied with an answer, the asker can select the answer as the accepted

answer among all the posted answers.

2.2 Quality Assessment Mechanism of Posts of Stack Overflow

The quality of the questions and answers in SO is subjectively assessed by the users through a voting system.

Users can cast either upvotes or down votes based on the quality of the questions or answers. Generally,

high-quality posts (i.e., questions or answers) are voted up; on the contrary, low quality (e.g., unclear, vague,

off-topic) posts are likely to be downvoted. A reputation system has been implemented on SO to measure

and encourage users’ contributions to the community [149]. There are many ways for users to earn and lose

reputation points. For instance, an answer or a question can be upvoted by other users; as a result, the

answerer or question submitter gains ten reputation points as a reward [86]. On the other hand, when an

answer or a question is being downvoted, the answer or question submitter loses two reputation points [86].
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2.3 Edit System in Stack Overflow

SO encourages users to edit the questions and answers to improve their quality. Conceptually, for a given

content C shared in SO, the edit system S is composed of the five major entities: S = {U,C,E, P,D}, where

(1) U is a set of users, (2) C is the content, (3) E is a list of suggested edits to the content, (4) P is the

process of reviewing the suggestions, and (5) D is a decision that can be made on a suggested edit.

User U denotes both content owner UC and other users offering edit suggestions UE , i.e., U = {UC , UE}.

Content C denotes a SO post (i.e., question or answer), C = {CA, CQ}. Depending on the type of participat-

ing user, the process P can of two types, normal PN and expedited PX (explained below). For a suggested

edit, a decision can be either approve or reject, i.e., D = {DA, DR}.

Each suggested edit creates a new updated version of the current version of the content. Suppose the

versions are denoted by V = {V1, V2, ..., Vn}. Upon approval of a suggested edit on a version Vi, the edited

version is identified by a new version Vi+1, and the new version becomes the current state of the content that

is visible to everyone. Upon rejection of a suggested edit on the version Vj , the content owner can decide to

keep the current state of the content as Vj or rollback to a previous version Vi, where i < j. The rolled-back

version then becomes the current state of the content. The normal and expedited edit review processes are

applied based on the reputation score of the user who suggested an edit. In a normal edit review process PN ,

suggested edits of the users who have less than 2K reputation are placed in a review queue. In an expedited

edit review process, PX , users with more than 2K reputation can edit questions and answers without going

through the review queue.

2.4 Machine Learning Algorithms

Machine learning (ML) is the systematic study of algorithms and statistical models that computer systems

employ to perform a specific task [139]. It is about making computers modify or adapt their activities so

that these activities get more accurate, where accuracy is measured by how well the chosen actions reflect the

correct ones [71]. In particular, machine learning algorithms build a mathematical model based on sample

data, known as training data, to make predictions or decisions [10]. It does not use explicit instructions;

rather, it relies on patterns and inference instead. It is regarded as a subset of artificial intelligence. Machine

learning algorithms are used in a wide variety of applications, where it is difficult or infeasible to develop a

conventional algorithm for effectively performing the task. Machine learning can be classified as follows.

Supervised learning. A training set of examples with the correct responses is given. Based on this

training set with responses, the machine learning algorithm generalizes to respond correctly to all possible

inputs [71]. This is also called learning from exemplars.

Unsupervised learning. Unlike supervised learning, correct responses are not provided, but instead,

the algorithm attempts to identify similarities between the inputs so that inputs that have something in
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common are categorized together in unsupervised learning [71]. The statistical approach to unsupervised

learning is recognized as density estimation.

Reinforcement learning. Reinforcement learning is somewhere between supervised and unsupervised

learning. The algorithm gets told when the answer is incorrect but does not get told how to correct it [71].

It has to explore and try out different possibilities until it works out to get the answer right. Reinforcement

learning is sometimes called learning with a critic because of this monitor that scores the answer but does

not suggest improvements [71].

In our thesis, we employ supervised machine learning algorithms to predict unanswered and discouraged

(i.e., low quality) questions of SO. The algorithms are discussed as follows.

2.4.1 Naive Bayes (NB)

Naive Bayes is a simple, however, it is effective and commonly-used machine learning classifier. It is a

probabilistic classifier that makes classifications leveraging the Maximum A Posteriori decision rule in a

Bayesian setting. Naive Bayes can also be represented using a very simple Bayesian network. Bayes theorem

can be rewritten as –

P (y|X) =
P (X|y)P (y)

P (X)
(2.1)

The variable y is the class variable which represents the question category. Variable X represents the features.

X is given as –

X = (x1, x2, x3, · · · , x10) (2.2)

Hence, x1, x2, x3, · · · , x10 represent the features. By substituting for X and expanding using the chain rule

we get –

P (y|x1, x2, ...., x10) = P (x1|y)P (x2|y) · · ·P (x10|y) (2.3)

Now, we can obtain the values for each by looking at the dataset and substitute them into the equation. For

all the entries in the dataset, the denominator does not change. Thus, the denominator can be removed and

a proportionality can be introduced.

y = arg max yP (y)

10∏
i=1

P (xi|y) (2.4)

Using the above function, we obtain the class, given the predictors. Since some of our features have continuous

values we use Gaussian Naive Bayes (GNB). Since the way the values are present in the dataset changes,

the formula for conditional probability changes to –

P (xi|y) =
1√

2πσ2
exp(− (xi − µy)2

2σ2
y

) (2.5)
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Here, µy is the mean of the values in X associated with class y, and σ2
y is the variance of the values in X

associated with class y. The major advantage of the naive Bayes classifier is that it takes a short computational

time for training. In addition, since the model has the form of a product, it can be converted into a sum

through the use of logarithms with significant consequent computational advantages.

2.4.2 Artificial Neural Networks (ANN)

Perceptrons can classify linearly separable sets of instances. Input instances are linearly separable when a

straight line or plane can be drawn to separate the input instances into their correct categories. Then the

perception could find the solution. When the instances are not linearly separable, learning can not reach

a point where all instances are classified properly. Artificial Neural Networks (Multi-layered Perceptrons)

have been created to try to solve this problem. A multi-layer neural network consists of a large number of

neurons (i.e., units) joined together in a pattern of connections. Usually, units in a net are segregated into

three classes. They are (1) input units, which receive information to be processed, (2) output units, where

the results of the processing are found, and (3) units in between known as hidden units. Figure 2.1 shows

the basic architecture of a Artificial Neural Network. First, the network is trained on a set of paired data to

determine the input-output mapping. The weights of the connections between neurons are then fixed, and

the network is used to determine the classifications of a new set of data.

Figure 2.1: Architecture of ANN

During classification, the input units’ signal propagates through the net to determine the output units’

activation values. Here, each input unit has an activation value that denotes some features external to the

net. Next, every input unit sends its activation value to each of the hidden units to which it is connected.

Each of these hidden units calculates its activation value, and this signal is then passed on to output units.

For each receiving unit, the activation value is calculated using a simple activation function. The function

then sums together the contributions of all sending units. Here, a unit’s contribution is determined as the

weight of the connection between the receiving and sending units multiplied by the sending unit’s activation

value. Usually, this sum is further modified, for instance, by adjusting the activation sum to a value between 0

and 1 and/or setting the activation value to 0 unless a threshold level is reached for that sum. Appropriately

determining the hidden layer’s size is a challenging task since an underestimate of the number of neurons

could lead to poor approximation and generalization capabilities. At the same time, excessive nodes can result
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in overfitting and eventually do the search for the global optimum more difficult. Model overfitting means

such a model that learns the training dataset too well, performing well on the training dataset; however, it

does not perform well on a testing dataset.

ANN primarily depends upon three fundamental aspects. They are – (1) input and activation functions

of the unit, (2) network architecture, and (3) the weight of each input connection. The ANN’s behavior could

be defined by the current values of the weights since the first two aspects are fixed. Initially, the weights

of the net to be trained are set to random values, and then the instances of the training set are repeatedly

exposed to the net. The values for the input of a instance are put on the input units. The output of the net

is then compared with the desired output for this instance. Then, all the net weights are adjusted slightly in

the direction that would bring the output values of the net closer to the values for the desired output.

2.4.3 Decision Trees (DT)

Decision trees are widely used in machine learning for classification tasks. They mainly split train sets accord-

ing to some heuristics. Intermediate nodes represent conditions for splitting train set. Most of the commonly

used decision trees like ID3, C4.5 and CART mainly apply different heuristics like entropy, information gain,

gain ratio, gini index to decide which feature to be used for next split of the train set. ID3 can only be used

when features are categorical. C4.5 and CART are extensions of ID3 which can work with features of both

categorical and continuous data. Since our features have both continuous and Boolean values. So, CART or

C4.5 are most suitable to use for above mentioned dataset.

Entropy(S) =

n∑
i=1

−PCi
∗ log2(PCi

) (2.6)

Gain(S,A) = Entropy(S)−
m∑
i=1

PAi ∗ Entropy(SAi) (2.7)

Here, S is sample, PCi
is the frequentist probability of a sample/class Ci, A is set of features, n is number

of classes, m is categories for nominal value and ranges for continuous value. Entropy is the measure of

uniformity. The more train set, S is balanced with classes, the more the entropy will be. For each attribute,

Gain is calculated and then the most valued attribute is used to split set S. This process continues until we

find all split resulting same class subset of S.

2.4.4 Random Forest (RF)

Random Forest proposed by Breiman [14] is an ensemble of decision trees. The ensemble model’s main

principle is that a group of weak learners come together to form a strong learner. In recent years, ensembles

of classifiers have arisen as a possible solution even to the class imbalance problem [65]. Ensemble learners,

also known as multiple classifier systems, try to improve single classifiers’ performance by inducing several

classifiers and combining them to obtain a new classifier that outperforms every one of them [92]. Random
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Forest is highly scalable to any number of dimensions and generally has quite acceptable performance [1]. In

addition, it is user-friendly mainly for two reasons – (1) it has only two parameters (the number of variables

in the random subset at each node and the number of trees in the forest), and (2) it is usually not very

sensitive to their values [60]. The reasons behind the popularity of these algorithms are as follows.

• Random Forest deals with the bagging of classification trees. Bagging (or bootstrap aggregating) is

based on training many classifiers on bootstrapped samples from a training set, which has been shown

to reduce the classification variance [37]. The usage of bagging enhances accuracy when random features

are present and gives ongoing estimates of the generalization error of the combined ensemble of trees,

as well as estimates for the strength and correlation [14].

• This algorithm runs efficiently on large datasets, and for large data, it creates highly accurate predic-

tions. Our total dataset is pretty large, as mentioned above.

• Uses of multiple trees reduce the risk of overfitting the data. Overfitting is a modeling error that occurs

when a function is too closely fit for a limited set of data points.

• The random forest algorithm could be used in feature engineering, that is, identifying the most impor-

tant features among the available features from the training dataset. As we are working on 12 features,

we need to understand from our data whether all the features are helpful for our prediction modeling.

In bagging, Random Forest generates successive trees that do not depend on earlier trees; each is indepen-

dently constructed using a bootstrap sample of the data set [14]. In the end, a simple majority vote is taken

for prediction [60]. The Random Forest approach introduces more randomness and diversity by employing

the bagging technique to the feature space. That is, it randomly samples elements of the predictor space,

instead of searching greedily for the best predictors to create branches. Thus, it adds more diversity and

reduces the trees’ variance at the cost of equal or higher bias. This process is also known as feature bagging,

and it is this powerful method that leads to a more robust model [54]. In standard trees, each node is split

using the best split among all variables. In a random forest, each node is split using the best among a subset

of predictors randomly chosen at that node. This somewhat counter-intuitive strategy turns out to perform

very well compared to many other classifiers, including support vector machines, discriminant analysis, and

neural networks and is robust against overfitting [14].

2.4.5 K-Nearest Neighbors(KNN)

K-Nearest Neighbor is a non-parametric [38] and lazy method used for classification and regression problems.

Non- parametric means that it does not make any assumptions on the underlying data distribution. In other

words, the model structure is determined by the data. Lazy means that it does not use the training data

points to make any generalization. In other words, there is no explicit training phase, or it is very minimal.

Thus, the training phase is fast. Here, k is the input and refers to the number of closest examples that the
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model will look for among the feature space’s training data. The model’s output represents the class to which

the test data belongs to, and it depends on the majority vote of its k-nearest neighbor [74]. Nearest Neighbor

involves both positive and negative cases as a training set. A new sample is then classified by calculating the

distance to the nearest training case, and the sign of that point determines the classification of the sample

[100]. The KNN classifier extends this idea by taking the k nearest points and assigning the majority’s sign.

Larger k values assist in reducing the effects of noisy points within the training data set, and the choice of k

is often performed through cross-validation [50].

This method is an instant-based learning algorithm that categorized objects based on the closest feature

space in the training set [41]. Based on the category of the training set, the feature space is partitioned into

regions. A point in the feature space is assigned to a particular category if it is the most frequent category

among the k nearest training data [50]. For finding closest similar points, we can find the distance between

points using distance measures such as Euclidean distance, Hamming distance, Manhattan distance, and

Minkowski distance.

2.5 Metrics of Success

We evaluate the performance of our machine learning models using four appropriate performance metrics -

precision, recall, F1-score, and accuracy [70]. We first generate confusion matrix that represents actual vs

predicted number of samples for each category and then calculate the performance metrics. For describing

confusion matrix, there are four terms. They are – (1) True Positive (TP) - the number of samples predicted

as positive and are really positive, (2) True Negative (TN) - the number of samples predicted as negative

and are actually negative, (3) False Positive (FP) - the number of samples predicted as positive, but actually

negative, and (4) False Negative (FN) - the number of samples predicted as negative, but actually positive.

Using these terms, we calculate the performance metrics as follows.

2.5.1 Precision

Precision is the ratio of accurately predicted positive sample and total predicted positive sample. So, for a

class label X, Precision will be:

PrecisionX =
TPX

TPX + FPX
(2.8)

2.5.2 Recall

Recall is the ratio of accurately predicted positive sample and total positive sample in the data-set. So, for

a class label X, Precision will be:

RecallX =
TPX

TPX + FNX
(2.9)
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2.5.3 F1-score

F1-score describes how accurately and robustly a classifier predicts. It is harmonic mean of precision and

recall. So, for a class label X, F1-score will be:

F1X = 2 ∗ 1
1

PrecisionX
+ 1

RecallX

(2.10)

2.5.4 Accuracy

Accuracy means how many samples of overall prediction are correctly classified. For our work, accuracy for

our model is the ratio of correctly predicted samples and total predicted samples.

Accuracy =

∑
i Ci,i∑
i,j Ci,j

(2.11)

2.6 Statistical Tests

The statistical significance tests that we use in this thesis are as follows.

2.6.1 Chi-Square Test of Independence

This statistical test is employed to determine whether there is a significant relationship between two nom-

inal (i.e., categorical) variables [108, 109, 125]. The value of one variable does not change the probability

distribution of another variable when the two categorical variables are independent. On the contrary, the

distribution of one depends on the other when they are related to each other. The null hypothesis for this

test is that the variables are independent, whereas the alternative hypothesis is that they are dependent. To

measure the independence of two variables, we have to calculate the degrees of freedom, expected frequencies,

test statistic, and the P-value associated with the test statistic using the given sample data as follows. Then

we can interpret either the two variables are independent or not.

Degrees of Freedom (DF). The degrees of freedom is equal to –

DF = (r − 1)× (c− 1) (2.12)

where r represents the number of levels for one categorical variable, and c represents the number of levels for

the other categorical variable.

Expected Frequencies. The expected frequency counts are computed separately for each level of one

categorical variable at each level of the other categorical variable. Compute r × c expected frequencies,

according to the following formula.

Er,c =
nr × nc

n
(2.13)
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where Er,c is the expected frequency count for level r of Variable A and level c of Variable B, nr is the total

number of sample observations at level r of Variable A, nc is the total number of sample observations at level

c of Variable B, and n is the total sample size.

Test Statistic. The test statistic is a chi-square random variable (χ2) defined by the following equation.

χ2 =
∑ (Or,c − Er,c)2

Er,c
(2.14)

where Or,c is the observed frequency count at level r of Variable A and level c of Variable B, and Er,c is the

expected frequency count at level r of Variable A and level c of Variable B.

P-value. The P-value is the probability of observing a sample statistic as extreme as the test statistic.

Since the test statistic is a chi-square, we can use the Chi-Square Distribution Calculator to assess the

probability associated with the test statistic.

Result Interpretation. If the sample findings are unlikely, given the null hypothesis, We can reject

the null hypothesis. In particular, we can compare the P-value to the significance level, and reject the null

hypothesis when the P-value is less than the significance level [125].

2.6.2 Mann-Whitney-Wilcoxon (MWW) Test

Mann–Whitney–Wilcoxon (MWW) test (a.k.a., Mann–Whitney U test, or Wilcoxon rank-sum test, or

Wilcoxon–Mann–Whitney test) is a non-parametric test that can be used to investigate whether two in-

dependent samples come from the same population, or, alternatively, whether observations in one sample

tend to be larger than observations in the other [140]. It compares two groups of data that are not normally

distributed, such as those which are not measured exactly but rather as falling within certain limits [28]. Like

other rank tests, the data in both groups being compared are initially arranged and listed to increase value.

Then each number in the two groups receives a rank value. Each number is assigned a rank beginning with

the smallest number in either group (which is given a rank of 1.0). If there are duplicate numbers (i.e., ties),

then each value of equal size receives the median rank for the entire identically sized group. For example, if

the lowest number appears twice, both figures receive the rank of 1.5. In turn, this means that the ranks of

1.0 and 2.0 have been used, and the next highest number has a rank of 3.0. Similarly, if the lowest number

appears thrice, then each is ranked as 2.0, and the next number has a rank of 4.0. In this way, each tied

number gets a median rank. This process proceeds until all the numbers are ranked. Each of the two columns

of ranks (one for each group) is totaled, giving the sum of ranks for each group being compared.

There are different ways to evaluate the results. The easiest way advised by Wilcoxon, by which a test

statistic TS is the sum of the ranks in the smaller group, i.e., the group with fewer observations (when

groups are equally sized, either can be chosen) [28]. The statistic is evaluated in a special Mann-Whitney

table. In other statistics, the sum of the ranks is TS and TL, representing the smaller and larger rank sums,

respectively. If the groups were the same, the difference in rank sums should be small. A test statistic U is

calculated as –
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U = Ts − na ×
(na + 1)

2
(2.15)

where na refers to the number in the group with the lower rank-sum. Consult a Mann-Whitney table, which

usually has the number of observations in both groups as entries. The target is to find the last probability

column that does not contain the value of the statistic (U). There are different layouts of the tables, but they

only cover up to a total number of observations of about 20. If there are more observations, the rank-sum

approaches a normal distribution, and a z-value can be calculated.

2.6.3 Effect Size

Effect size is a quantitative measure of the magnitude of the experimenter effect [73, 141]. Effect size can

be looked at when comparing any two groups to see how substantially different they are. Effect sizes either

measure the sizes of differences between group means or the sizes of associations between variables [73].

Sullivan and Feinn [112] argue that p-value can inform the reader whether an effect exists; however, the

p-value will not reveal the effect’s size. They suggest that both the substantive significance (i.e., effect size)

and statistical significance (i.e., p-value) are essential results to be reported in reporting and interpreting

studies. While the sample size is sufficiently large, a statistical test usually almost always demonstrates a

significant difference, even when the effect size is about zero. Thus, reporting only the significant p-value for

analysis is not adequate for readers to fully understand the results [112].

Cohen’s d is frequently used to measure the effect size for the comparison between two means. To compute

the standardized mean difference between two groups, first, subtract the mean of one group from the other

and then divide the result by the standard deviation (SD) of the population from which the groups were

sampled. We can thus calculate Cohen’s d as follows.

Cohen′s d =
Mean1 −Mean2

SD
(2.16)

Cohen suggested that d=0.2 be considered a small effect size, 0.5 represents a medium effect size and 0.8 a

large effect size. This means that if two groups’ means don’t differ by 0.2 standard deviations or more, the

difference is trivial, even if it is statistically significant.

The Cliff’s Delta statistic is another non-parametric effect size measure that quantifies the amount of

difference between two groups of observations beyond p-values interpretation [69, 148]. Suppose that we have

two samples X = x1, .........., xm and Y = y1, ......., yn. Define the delta function as follows.

δ(i, j) =


+1 xi > yj

−1 xi < yj

0 xi = yj

(2.17)

Cliff’s delta effect size is then defined by
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δ =
1

mn

m∑
i=1

n∑
j=1

δ(i, j) (2.18)

Here, values of δ near ±1 mean that there is no overlap between the two samples, while values near zero

indicate a lot of overlap between the two samples [148].

2.7 Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

ROUGE includes measures to automatically determine the quality of a summary by comparing it to other

ideal summaries created by humans [62]. In particular, the measures count the number of overlapping units

such as n-gram, word sequences, and word pairs between the computer-generated summary to be evaluated

and the ideal summaries created by humans. It includes several automatic evaluation methods such as –

ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-S. In this thesis, we use ROUGE-N that can be defined

as follows.

ROUGE-N: N-gram Co-Occurrence Statistics. It is an n-gram recall between a candidate summary

and a set of reference summaries [62]. ROUGE-N is computed as follows.

ROUGE −N =

∑
Sε{ReferenceSummaries}gramnεS

∑
Countmatch(gramn)∑

Sε{ReferenceSummaries}gramnεS

∑
Count(gramn)

(2.19)

where n represents the length of the n-gram, gramn, and Countmatch(gramn) is the maximum number of

n-grams co-occurring in a candidate summary and a set of reference summaries. ROUGE-N is a recall-related

measure because the denominator of the equation is the total sum of the number of n-grams occurring at

the reference summary side. When more references are added, the number of n-grams in the denominator of

the ROUGE-N formula increases. The reason behind this is that there might exist multiple good summaries.

Hence, the numerator sums overall reference summaries. This effectively provides more weight to matching n-

grams occurring in multiple references. A candidate summary that contains words shared by more references

is thus favored by the ROUGE-N measures [62]. This is very intuitive and reasonable because we normally

prefer a candidate summary that is more similar to consensus among reference summaries.

2.8 Summary

In this chapter, we introduced different terminologies and background concepts that would help one to follow

the remaining of the thesis. We discuss the question answering, quality assessment and editing mechanism

of SO. We also discuss the different components of a question. We describe the machine learning algorithms

(e.g., decision trees, random forest) that employed in this study. Then we discuss the statistical significance

tests (e.g., MWW test). Finally, we define ROUGE, which is employed to measure the quality of a text

summary by comparing it to the summaries created by humans.
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3 Early Detection and Guidelines to Improve

Unanswered Questions on SO

Existing attempts in detecting unanswered questions of SO primarily rely on such attributes (e.g., score,

view count) of questions that are not available during the submission of a question. Detection of the poten-

tially unanswered questions in advance during question submission could help one improve the question and

thus receive the answers in time. In this chapter, we discuss our first study that proposes machine learning

models to detect unanswered questions during their submission.

The rest of the chapter is organized as follows. Section 3.2 discusses the overall methodology of this

study to answer the research questions. Section 3.3 reports the study findings. Section 3.3.1 discusses the

comparison between unanswered and answered questions using several quantitative features, and Section

3.3.2 reports the findings from qualitative analysis and the agreement between quantitative and qualitative

findings. Sections 3.3.3 describes the prediction models and their performance. Sections 3.4 reports the key

findings, Sections 3.5 discusses the existing studies related to our research. Section 3.6 discusses threats to

the validity of this study and finally, Section 3.7 summarizes the chapter.

3.1 Introduction

Software developers often search for solutions on the web for their programming problems. The advent of

Q&A websites such as SO has shaped the way developers search for information on the web [93]. SO is the

largest and most popular Q&A site that accumulates millions of programming related questions and answers.

These questions and answers are consulted by a large technical community of more than eight million users

(as of December 2018 [87]). Despite having such a large and engaged community, as already mentioned, about

29% of SO questions remain unanswered [87]. Besides, this percentage has been gradually increasing over

the years (e.g., Fig. 3.1). Unanswered questions devalue a knowledge base in terms of quality and relevance.

The lack of answers to the programming related questions also impedes the normal development progress.

Early detection of a question that might not be answered helps one improve the question and thus reduces

the answering time. Early detection means detection of the potentially unanswered questions in advance

during a question submission.

Several existing studies [5, 20, 102] investigate the unanswered questions of SO. Asaduzzaman et al. [5]

manually analyze 400 questions of SO and report 13 factors (e.g., proprietary technology, irregular users)
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Figure 3.1: Percentage of the questions not answered in SO over eleven years [87].

Figure 3.2: Schematic diagram of our conducted study.

that might explain why the questions remain unanswered. However, many of their reported characteristics

(e.g., impatient users) are hard to measure in practice. Besides, the authors also do not examine whether

their features could predict the unanswered questions or not. Saha et al. [102] introduce machine learning

models to classify answered and unanswered questions. Unfortunately, majority of their strong features (e.g.,

view count, score) are not available during the submission of a question. Thus, their model might not be

able to predict the unanswered questions reliably during their submission. Calefato et al. [20] study such

factors that might increase the chance of getting accepted answers to the SO questions. They suggest that

high quality presentation (e.g., body length), positive sentiment, question submission in weekdays, and high

user reputation might improve the chance of getting answers. However, when they were analyzed (in section

3.3.3), none of these factors (except user reputation) was found significant enough to reliably predict the

unanswered questions during their submission. In short, prediction of the unanswered questions is an open

research problem that warrants further investigation.

In this study, we (1) present a comparative analysis between answered and unanswered questions of SO,

and (2) provide four machine learning models to predict the unanswered questions. We conduct our study
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in three major phases. First, we analyze eight attributes of 4.8 million questions and their corresponding

question submitters, and perform comparative analysis to determine how the unanswered questions differ

from the answered questions. We find that the topics discussed in the question, experience of the question

submitter, and readability of question texts could potentially determine whether a question would receive

answers or not. Second, we manually investigate 400 questions (200 unanswered + 200 answered), and revisit

the quantitative findings above to see whether the quantitative and qualitative findings support each other

or not. Our qualitative findings not only confirm the quantitative findings above but also reveal several

new insights. Third, we develop four machine learning models using the features of the questions that are

available during their submission, and predict the unanswered questions. We choose four non-linear machine

learning algorithms – Decision Trees (CART) [15], Random Forest (RF) [14], K-Nearest Neighbors (KNN)

[3], and Artificial Neural Network (ANN) [136] – to train our prediction models. According to extensive

experiments, our models predict the unanswered questions with a maximum accuracy of 79% which is highly

promising. Comparison with two state-of-the-art models [20, 102] suggests that our models outperform them

with statistically significant margins. We thus answer three research questions with our study as follows.

RQ1. How do the unanswered questions differ from the answered questions in terms of their

texts and their submitters’ activities? We conduct a comparative analysis between the unanswered and

answered questions using eight quantitative metrics from the literature. We find that the topics of a question,

the experience of a question submitter, and the readability of question texts could potentially determine

whether a question would be answered or not. According to our analysis, questions related to programming

IDEs (e.g., RStudio), libraries (e.g., TensorFlow), and frameworks (e.g., Angular6) often remain unanswered.

Such questions are often discouraged at SO since they attract subjective opinions rather than authentic

answers. Second, the users who have a higher reputation score are more likely to get answers to their

questions. Third, easy-to-read questions are more likely to be answered.

RQ2. How do the unanswered and answered questions differ qualitatively? Do the qualita-

tive findings agree with the quantitative findings? We conduct a manual investigation of 400 questions

(200 unanswered + 200 answered) to see whether there is an agreement between the qualitative and quan-

titative findings. Besides supporting all the quantitative findings, our qualitative study also reveals several

other non-trivial factors that partially explain why the questions remain unanswered. For example, questions

that discuss outdated technology, multiple technical issues, or do not include appropriate code examples in

their texts are more likely to be not answered. Our findings also align with the guidelines posted by SO

about asking a good question [84]. However, their guidelines are theoretical. On the contrary, our findings

and insights are backed up by empirical evidence that can explain why certain questions are likely to receive

answers and the others are not. Moreover, our models can help the developers improve their questions with

instant predictions on their quality. Several questions receive working solutions in their comment thread.

Thus, although they seem to be unanswered, they are actually answered.

RQ3. Can we predict the unanswered questions of SO during their submission? We develop
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four machine learning models to predict the unanswered questions during their submission. Our models

predict the unanswered questions with a maximum of about 79% accuracy which is significantly higher than

that of the state-of-the-art models.

3.2 Study Methodology

In Fig. 3.2, we describe our overall methodology to answer the three research questions. We describe the

steps below.

Step 1: Data Collection and Preprocessing. Table 3.1 shows the summary of our collected dataset.

We collect SO questions using StackExchange Data API [87] (e.g., Fig. 3.2, Step 1.a). In particular, we

collect questions related to four popular programming languages - C#, Java, JavaScript, and Python. We

choose the questions that were submitted on the site in the year 2017 or earlier (e.g., Fig. 3.2, Step 1.b).

We wanted to ensure enough time for each question to be assessed by the SO community. We get a total of

4,814,900 questions where 4,324,252 questions have one or more answers, and the remaining 500,648 questions

are unanswered (e.g., Fig. 3.2, Steps 1.c – 1.f). To calculate user reputation, we collect the information of

the SO users and the votes they received on their questions and answers. We also collect the data associated

with SO tags assigned to the questions.

Step 2: Compare Unanswered and Answered Questions. We extract eight features (e.g., Text

Readability, Topic Response Ratio, Topic Entropy) from both unanswered and answered questions (e.g.,

Fig. 3.2, Step 2.a), and conduct a comparative analysis (quantitative) between the attributes of these two

categories (e.g., Fig. 3.2, Step 2.b).

Step 3: Agreement Analysis. We manually analyze 400 questions (200 unanswered + 200 answered)

to investigate the qualitative difference between unanswered and answered questions (e.g., Fig. 3.2, Steps

3.a, 3.b). In particular, we attempt to determine whether the qualitative findings agree with the quantitative

findings or not.

Step 4: Predict Unanswered Questions. We build four machine learning models to predict whether

the SO questions might be answered or not (e.g., Fig. 3.2, Step 4.a). Finally, we analyze the results of our

models and also compare with the state-of-the-art models (e.g., Fig. 3.2, Step 4.b).

Table 3.1: Summary of the study dataset

C# Java JavaScript Python Total

Answered 1,034,516 1,182,921 1,340,016 766,799 4,324,252

Unanswered 113,903 143,757 158,344 84,644 500,648

Total 1,148,419 1,326,678 1,498,360 851,443 4,814,900
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3.3 Study Findings

We ask three research questions in this study. In this section, we answer them carefully with the help of our

empirical and qualitative findings as follows:

3.3.1 Answering RQ1 : Comparison between Unanswered and Answered Ques-

tions using Quantitative Features

In this section, we contrast between the unanswered and answered questions using eight metrics that capture

different aspects (e.g., readability, topic) of a question. Each of them is discussed as follows.

Figure 3.3: Text readability (TAQ=Total Answered Questions, RSAQ=Randomly Sampled An-
swered Questions, UAQ=Unanswered Questions).

(M1) Text Readability. Readability of a text document depends on the complexity of its vocabulary,

syntax and the presentation style (e.g., line lengths, word lengths, sentence lengths, syllable counts) [138]. We

extract the title and textual description from the body of each question to measure its text readability. The

existing readability metrics are not well designed for handling the code or program elements within the texts

[91]. We thus discard the code elements, code segments, and stack traces from the textual description using

specialized HTML tags. For example, code elements are enclosed by <code> tag, code segments and stack

traces are enclosed by <code> under <pre> tag. Unfortunately, some users do not use appropriate tags. We

thus attempt to remove the code elements (e.g., method name) and stack traces from texts by employing

appropriate regular expressions, as used by the existing literature [77]. We compute five popular readability

metrics: Automated Reading Index (ARI) [106], Coleman Liau Index [24], SMOG Grade [68], Gunning

Fox Index [39], Readability Index (RIX) [4]. These metrics are widely used to estimate the comprehension

difficulty of the English language texts [93]. First, we calculate the individual score (i.e., grade level) for each

of the five metrics, and then determine the average readability of each question’s text. Here, the lower the

grade level, the easier the text is to read, and conversely, the higher the grade level, the more difficult the

text is to read.
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As shown in Fig. 3.3, we find a significant difference in the text readability between answered and

unanswered questions. Answered questions have higher text readability (i.e., lower grade level) than that

of the unanswered questions. Unanswered questions often contain long, multi-syllable words whereas the

answered questions generally contain small, simple words. For example, according to our analysis, the

average number of long (i.e., length > 6) and multi-syllable words per answered question are 17.8 and

27.8, whereas the same numbers for the unanswered question are 20.8 and 32.4 respectively. Since word

length and syllable are important dimensions of the traditional readability tools [4, 24, 39, 68, 106], the

low readability of the unanswered questions is pretty much explained. We also address the data imbalance

issue during our comparative analysis. Since the number of answered questions is higher than that of the

unanswered questions in our dataset, we randomly under-sample the answered questions to balance the

dataset. Then we compare the readability scores between unanswered and answered questions again with the

sampled data. Interestingly, we were able to reproduce the same finding as above. We also perform statistical

significance tests such as Mann-Whitney-Wilcoxon and Cliff’s Delta, and found statistical significance for all

four programming languages (i.e., p-value = 0 <.05 and Cliff’s |d| = 0.17 (small)). That is, the readability

of the answered questions is significantly higher than that of the unanswered questions regardless of the

programming languages. Since we perform multiple comparisons (e.g., comparisons of unanswered, total

answered and random sampling answered) our result could be affected by the type I error in null hypothesis

testing. In statistical hypothesis testing, a type I error is the rejection of a true null hypothesis [142]. To

mitigate this problem, we control the false discovery rate (FDR) by adjusting the p-values based on the

method of Benjamini and Yekutieli [8].

Figure 3.4: Topic response ratio (TAQ=Total Answered Questions, RSAQ=Randomly Sampled
Answered Questions, UAQ=Unanswered Questions).

(M2) Topic Response Ratio. In SO, questions often might not receive answers due to their topical

difficulty. Questions related to certain topics (e.g., software libraries, platform, IDE) usually get less attention

than others (e.g., jquery-selectors, lisp) in SO. Questions on these topics might attract subjective opinions

rather than the authentic answers. Thus, these questions are discouraged and often redirected to other
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Table 3.2: Comparison between unanswered and answered questions using quantitative features

Feature
Answered Question Unanswered Question MWW Test

(p-value) Cliff’s |d|
Mean Median Std. Dev. Mean Median Std. Dev.

Text Readability 9.89 9.67 4.12 11.05 10.53 4.90 0 0.17 (small)

Topic Response Ratio 0.88 0.88 0.04 0.86 0.86 0.05 0 0.40 (medium)

Topic Entropy 2.63 2.66 0. 67 2.73 2.75 0.67 0 0.09 (negligible)

Metric Entropy 0.0068 0.0064 0.0026 0.0061 0.0058 0.0023 0 0.17 (small)

Average Terms Entropy 0.0004 0.0004 0.0001 0.0004 0.0003 0.0001 0 0.09 (negligible)

Text-code Ratio 1.35 0.46 4.00 1.17 0.36 3.85 0 0.09 (negligible)

User Reputation 62.97 22.0 131.73 39.16 10.0 110.76 0 0.24 (small)

Received Response Ratio 0.71 1.0 0.45 0.60 0.87 0.45 0 0.30 (small)

community websites (e.g., GitHub) for appropriate answers [82].

We first examine which topics are more likely to receive answers and which are not. In SO, tags often

capture the topics of a submitted question. Each question can have at most five tags and must have at least

one tag [150]. We first calculate the answering ratio of each topic, Rt as follows.

Rt =
AQ
TQ

(3.1)

where AQ and TQ represent the number of answered questions and total questions associated with the topic

respectively. Since each question can have multiple topics (tags), we then measure the topic response ratio

(Qresp) of each question as follows.

Qresp =
1

N
×

N∑
i=1

Rti (3.2)

where N is the number of topics associated with a question and Rti denotes the response ratio of the ith

topic of the question. According to our investigation, as shown in Fig. 3.4, the topic response ratio of

the unanswered questions is lower than that of the answered questions. It indicates that the topics of the

unanswered questions are of little interest to the SO user community. It is also possible that there are not

sufficient experts to answer the topics discussed in the unanswered questions. We also found this difference

as statistically significant using Mann-Whitney-Wilcoxon and Cliff’s delta statistical test (i.e., p-value = 0

<.05 and Cliff’s d = 0.40 (medium)).

(M3) Topic Entropy. Single tags (e.g., java) assigned to a question often fail to explain the topics or

subject matter of the question. On the contrary, multiple tags attached to a question could help the users

better understand the topics and thus help them find the questions of their interest. We analyze the ambiguity

of question topics and attempt to determine whether the unanswered questions use more ambiguous topics

than those of the answered questions. In information theory, entropy is used as a measure of uncertainty of

a random variable that takes up multiple values [97]. Similarly, we consider the probability of a question

discussing a certain topic as a random variable, and determine topic entropy of each question. To measure the
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topic entropy of each question, we first calculate the prior probability (Pk) of each topic (i.e., tag) associated

with the question at SO. Pk is defined as a ratio between the number of questions discussing a topic k ∈ n

and the number of questions discussing all the topics of SO. We then determine the topic entropy for each

question as follows.

TE = − 1

n

[
n∑
k=1

Pk × log(Pk)

]
(3.3)

where n denotes the total number of topics of a question. Here, we calculate the average entropy (dividing

the entropy by n) since the number of tags differ from question to question. If a question of SO uses one or

more ambiguous topics, the entropy becomes higher.

We contrast between unanswered and answered questions in terms of their topic entropy. Table 3.2

summarizes the comparative analysis. We see that topic entropy of answered questions is significantly lower

than that of the unanswered questions. Such a result indicates that the unanswered questions are more

ambiguous than the answered questions, which possibly left them with no answers.

(M4) Metric Entropy and (M5) Average Terms Entropy. We use Metric Entropy and Average

Terms Entropy to estimate the randomness of terms used in the textual part of the unanswered and answered

questions. Metric Entropy is the Shannon entropy [123] divided by the character length of the question’s text.

It represents the randomness of the terms against a question [93]. Average Terms Entropy also estimates

the randomness of each term for the question’s text. However, in this case, the entropy of each term is

calculated against all the questions on SO. We first calculate the entropy for each term in the SO data dump

of December 2017 [32]. We then determine the equivalent entropy of each term for a question’s text against

all the questions. Finally, we calculate the Average Term Entropy for each question by summing each of

the terms entropy for the question divide by the character length of the question’s text. The entropy value

describes the discriminating power of a term [93]. The lower the entropy of a question, the higher the use of

uncommon terms in the question.

As shown in Table 3.2, we find a relatively lower metric and average terms entropy for the unanswered

questions than that of the answered questions. That is, the unanswered questions use more uncommon

terms in their texts than the answered questions do. It indicates that the unanswered questions might use

inappropriate terms that do not describe the problem correctly. Moreover, they might touch such topics that

often remain unanswered. According to our analysis, we found the differences are statistically significant (i.e.,

p = 0 <.05) using the Mann-Whitney-Wilcoxon test. However, the effect size is either small or negligible.

(M6) Text-code Ratio. The ratio between text and code of a question is often considered as an

important dimension of question quality [110]. Large code segments with little explanation might make a

question hard to comprehend. We thus wanted to find out whether the unanswered and answered question

differ from each other in terms of their text-code ratio. We extract the code segments and texts from the

body of a question. Then we calculate the text-code ratio by dividing the character length of the text with

the length of the code segment. When the code segment is absent from a question, we assign a large number
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as the text-code ratio.

According to our analysis, the text-code ratio of the unanswered questions is lower than that of the

answered questions (as shown in Table 3.2). That is, insufficient explanation of the code segment could be

a potential factor that might explain why the questions remain unanswered. We also measure whether the

difference of text-code ratio between unanswered and answered questions is statistically significant. From the

Mann-Whitney-Wilcoxon test, we find significant p-value (p-value = 0 <.05). However, the effect size from

the Cliff’s Delta test was found negligible.

Figure 3.5: User reputation (TAQ=Total Answered Questions, RSAQ=Randomly Sampled An-
swered Questions, UAQ=Unanswered Questions).

(M7) User Reputation. The reputation system of SO is designed to incentivize contributions and to

allow assessment from the users [18]. Asaduzzaman et al. [5] argue that a question submitted by a user

with a higher reputation has a higher possibility of getting answers. We thus consider the users’ reputation

as a distinctive feature of SO questions. The official data dump only reports the latest reputation scores

of the users, which might not be appropriate for our analysis. However, SO stores all the activities (e.g.,

votes, acceptances, bounties) of users with their dates. We thus use the snapshot of the activities of users

to calculate the reputation during their question submission. For reputation calculation, we used a standard

equation provided by the SO [33].

According to our analysis (Fig. 3.5), the reputation of the authors of unanswered questions is lower than

that of the authors of answered questions. It confirms that the high reputation score increases the chance

of getting answers. Using the Mann-Whitney-Wilcoxon test, we find a significant p-value (i.e., p-value = 0

<.05) although the effect size is small (i.e., Cliff’s d = 0.24).

(M8) Received Response Ratio. The past question-answering history of a user might provide useful

information as to whether a question submitted by the user will be answered or not [102]. Thus we investigate

a user’s question-answering statistics. In particular, we measure the percentage of answered questions (AQp)

asked by users during their new question submission as follows.
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AQp =

∑
t<T Aq∑
t<T Tq

× 100 (3.4)

where T is the submission time of the question currently being processed, t represents the submission time

of the previous questions, Aq represents the total number of answered questions, whereas Tq represents the

total number of posted questions.

According to our analysis, a user with a higher percentage of receiving answers in the past has a higher

chance of receiving answers in the future. As shown in Table 3.2, the authors of the answered questions

received answers for about 71% of their submitted questions in the past. On the contrary, the same percentage

is about 60% for the authors of the unanswered questions. The difference is statically significant (i.e., p-value

= 0 <.05) with a small effect size (i.e., Cliff’s d = 0.30).

3.3.2 Answering RQ2 : Agreement Analysis between Quantitative and Quali-

tative Findings

While our quantitative analysis provides enough evidence that unanswered questions are significantly different

from the answered questions, we further conduct qualitative analysis to better understand their difference.

In particular, we attempt to determine whether the qualitative findings agree with the quantitative findings

from the above section (Sec. 3.3.1) or not.

Study Setup. In SO, the topics of a question are often conveyed through predefined tags. We first find

the popular tags that were assigned to at least 5K questions of SO. Then we find the questions that use one

of these tags. We count the number of unanswered and answered questions connected to each topic. We

then measure the ratio of unanswered and answered questions against each given topic. We then find the

top 10 topics that were unanswered (e.g., jupyter-notebook, electron, rstudio) and another top 10 that were

frequently answered (e.g., scheme, sql-server-2005, asp.net-mvc-2). Finally, we randomly choose 20 questions

for each of these 20 topics, manually analyze a total of 400 questions (statistically significant with a confidence

level of 95% and confidence interval of 5% [12]), and derive several qualitative insights.

Manual Analysis. Two of the authors conduct a qualitative study to see the different quality aspects

of unanswered questions, contrasting them with answered questions. We analyze 400 questions by spending

a total of 40 man-hours. We first examine the randomly sampled questions with no particular viewpoints in

mind. We then discuss together to share our understanding and set a few dimensions to proceed with our

analysis. Next, the sampled data is presented to each author for manual analysis. The authors rank them

with four major quality aspects from 0 (lowest) to 5 (highest). The aspects are – i) problem description and

code explanation ii) topic assignment ii) question formatting and iv) appropriateness of the code segments

included with questions. Besides the above aspects, we also investigate whether the question was received an

answer in a comment, redirected to another site (e.g., GitHub), asked suggestions, raised multiple issues in

a single question, and marked as a possible duplicate. During the manual investigation, we periodically sat
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Figure 3.6: Comparison (qualitative) between unanswered and answered questions.

together and discussed the major inconsistencies in ranking until a consensus was reached. In particular, we

resolved the inconsistencies by discussion when our ranking varied more than two in any aspect of a question.

Results. Fig. 3.6 shows the results of our manual analysis. For each of the four aspects, the average

ranking for unanswered questions is lower than that of the answered questions. For example, the appropri-

ateness of the code segments is 2.7 (on the scale of 5) for unanswered questions. Such rank is 3.63 for the

answered questions. Our findings from the manual analysis are as follows.

• Problem description and explanation of code segments: We find that the problem description of the

answered questions is complete, relevant, and easy to read. These questions include code segments when

required and provide a useful explanation of the code elements so that users can comprehend them easily.

When a question includes several code segments, we find a separate explanation for each of them. On the

other hand, we find that the problem description is not sufficient and somewhat irrelevant in the unanswered

questions. Questions without a clear problem statement are not useful to the readers. In the case of

unanswered questions, we found long, redundant code segments that were not explained properly. They also

do not provide any markers that could help one find the faulty part of the code. Sometimes the environment

settings (e.g., operating system) and other technical details (e.g., software version) were found missing as

well. In the quantitative analysis (section 3.3.1), we also find that the text-code ratio of the unanswered

questions is lower than that of the answered ones. Thus, our manual investigation supports the quantitative

difference in the text-code ratio between unanswered and answered questions.

• Users experience and usage of appropriate terms. We often see popular technical terms (e.g., GUI) in

the texts of the answered questions which are familiar to the technical community. Such a use of popular

words might improve the overall clarity of the question texts. On the contrary, we frequently notice the

use of non-technical terms in the unanswered questions. This might occur due to the lack in experience

(i.e., novice user) and domain expertise. In the quantitative analysis, we also find that (1) the submitters’

reputation of the unanswered questions is lower than that of the submitters’ of the answered questions on

average, and (2) unanswered questions use more uncommon terms. Thus, our manual investigation agrees
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with the quantitative difference in the word uses between unanswered and answered questions.

• Assignment of appropriate topics. Tags assigned to the answered questions are precise and interesting

enough to attract the experts of the domain. On the contrary, the tags assigned to the unanswered questions

are generic (e.g., Java). Our topic entropy shows that the unanswered questions’ tags are more generic, less

precise than that of the answered questions. Users with low reputation (e.g., reputation < 1500) cannot add

new tags to their questions [83] and are forced to use the existing generic or even potentially non-appropriate

tags. Such a constraint might also prevent novice users of SO to assign proper tags to their questions.

3.3.3 Answering RQ3 : Construction of Prediction Models and Result Analysis

RQ1 and RQ2 investigate why the questions of SO remain unanswered using quantitative and qualitative

approaches. Predicting a question (during its submission) that might not be answered could help one (1)

improve the question and (2) thus receive the answers in time. We construct four machine learning models

to predict whether a given question would be answered or not. In this section, we describe how we construct

these models and evaluate their performance. We also compare our model performances with the baseline

performances. Finally, we present a case study to demonstrate the generalizability of our models.

Algorithm Description. We use four algorithms for building prediction models – i) Decision Trees

(CART) [15], ii) Random Forest (RF) [14], iii) K-Nearest Neighbors (KNN) [3], and iv) Artificial Neural

Network (ANN) [136]. We choose these algorithms for two reasons. First, they are capable of building reliable

models, even when the relationship between the predictors and class is nonlinear or complex. According to our

comparative study, the relationship between question classes and their corresponding feature values might be

complex. Second, these algorithms are widely used in the relevant studies [93, 97, 102]. Thus, we choose these

four popular machine learning techniques that have different learning strategies to predict the unanswered

questions. Moreover, they are non-parametric machine learning techniques. That is, they do not make any

assumptions on the underlying data distribution.

Classification and Regression Tree (CART) and Random Forest (RF) are tree-based algorithms where the

trees are constructed using predictors as non-leaf nodes and the classes as the leaf nodes. They show how

individual features can affect the overall prediction. On the other hand, algorithms such as ANN and KNN

combine all features (a.k.a., predictors) for determining the class label of an instance. ANN constructs a

non-liner classification model during training, whereas KNN sorts the multi-dimensional feature space based

on their classes.

Metrics of Success. We evaluate our prediction models using four appropriate performance metrics -

precision, recall, F1-score, and classification accuracy.

Model Configuration. We use a grid search algorithm, namely GridSearchCV, from the scikit-learn

library [90] to select the best model configuration. GridSearchCV algorithm works by running and evaluating

the model performance of all possible combinations of parameters. We also examine the accuracy of both

train and test datasets and adjust the parameters so that models do not over-fit. We use the following
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parameter settings to configure our models.

ANN is configured using two hidden layers with each having eight activation units, logistic Sigmoid

function as the activation function, adam as the weight optimizer, learning rate of 0.0001 and a batch size

of 200. For KNN, we apply the K-Dimensional Tree (KDTree) algorithm to compute the nearest neighbors

between 50 neighbors where, distance is used for weight function. For DT, Gini is used as the function to

measure the quality of split and two is used as the depth of the tree. For RF, the number of trees is used 5

and Gini is used for splitting criteria.

Dataset Selection. We keep the training and testing data separate. We use the attributes of the

questions submitted on SO in the year 2016 or earlier for training and questions submitted in the year 2017

for the testing purpose. We have several time-dependent features (e.g., user reputation). Thus, we make sure

that we predict the unseen questions based on past questions.

Prediction of Unanswered Questions. To see how well the prediction models perform based on our

features, we conduct an experiment with our models. Table 3.3 shows the experimental results of our models.

Table 3.3: Experimental Results

Technique Question Precision Recall F1-Score Accuracy

Decision Trees
Unanswered 72.57% 67.37% 69.87%

70.95%
Answered 69.55% 74.54% 71.96%

Random Forest
Unanswered 77.68% 80.83% 79.22%

78.80%
Answered 80.02% 76.77% 78.36%

ANN
Unanswered 58.59% 72.37% 64.75%

60.60%
Answered 63.87% 48.84% 55.35%

KNN
Unanswered 67.62% 67.46% 67.54%

67.57%
Answered 67.54% 67.69% 67.62%

We see that all four models can predict the question classes with 61%-79% accuracy. Our primary focus

is to predict the unanswered questions. We thus analyze how the models perform to predict them. Random

Forest performs the best among four models with precision 77.68% and recall 80.83%. Decision Tree is

found as the second best with precision 72.57% and recall 67.37% followed by KNN with precision 67.62%

and recall 67.46%, and ANN with precision 58.59% and recall 72.37%. One clear distinction can be drawn

from the results that, individual feature processing algorithms such as Random Forest and Decision Tree are

comparatively better suited for our dataset than the collective feature processing algorithms such as ANN

and KNN. Moreover, Random Forest employs an ensemble learning, considers multiple trees to come to a

decision and thus can avoid over-fitting and suited better for our dataset. Constructing multiple decision

trees also helps the Random Forest model to capture non-linear relations between the predictors and classes

more accurately for our problem. On the contrary, our dataset might not be well suited for ANN and KNN.

We investigate 40 cases (20 unanswered + 20 answered) where all of our models fail. Such insights might
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help and motivate future studies to improve models’ performance. According to our investigation, our models

misclassify the unanswered questions that are related to a few rising technologies (e.g., netflix zuul, libgdx).

We see that the presentation quality, explanation of code segment, readability of text, and topic selection

of these questions were reasonably well. Unfortunately, they might be remained unanswered due to the lack

of experts. Our models often inaccurately predict the answered questions when they have long code with

a more concise explanation. We use the text-code ratio instead of the length of the text to overcome such

situations. However, our models fail to handle a few extreme cases [85]. Our analysis suggests that these

questions received answers because either they included self-explanatory code segments or the code segments

were capable of reproducing the issues reported at the questions [75].

Feature Strength Analysis. While answering RQ1, we showed that there are several attributes, whose

values are different for unanswered and answered questions. Such findings indicate that these attributes

might be the key estimators in predicting whether a question will be answered or not. A ranking of these

attributes might help to select the top estimators in the prediction task. We thus use ExtraTreesClassifier,

an inbuilt class of scikit-learn [90] to rank the features.

0 0.05 0.1 0.15 0.2

Received Response Ratio

Term Entropy

Text-code Ratio

Tag Entropy

Text Readability

Metric Entropy

User Reputation

Topic Response Ratio

Figure 3.7: Feature Rank

As shown in Fig. 3.7, topic response ratio has the highest classification strength. It indicates that selection

of appropriate tags (or topics) during question submission at SO is important. According to our investigation,

topics related to software libraries, frameworks are less likely to be answered in SO. User reputation is the

second most effective feature. That is, the trusted users by the SO community are more likely to get answers

in response to their questions. Reputation also serves as a proxy to a user’s skills or expertise in a particular

domain. The next two important features are metric entropy and text readability. They suggest that the

use of terms and reading ease of the question texts is important to receive answers. The use of ambiguous

complex terms can prevent a question from being answered. The remaining four features have low impacts

on receiving answers.

Comparison with Baseline Models. According to the results (Table 3.3), our proposed models able

to predict questions about 60–80% of the time correctly. However, we are interested to compare our models

with the models studies previously. Thus, we choose two state-of-the-art studies – i) Saha et al. [102], and
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(a) Decision Trees
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(b) Random Forest
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(c) K-Nearest Neighbors
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(d) Artificial Neural Network

Figure 3.8: The performance of different algorithms applied to the raw feature values.
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ii) Calefato et al. [20] related to our study. From the study of Saha et al. [102], we consider eight out of

twelve features and discard the rest. We discard the four features such as – number of views, question score,

number of favorite counts, and number of comments because they are not available at the submission time

of a question. From the study of Calefato et al. [20], we consider all nine features. Next, we build four

machine learning models using their attributes for each study. To create a level playing field, we also tune

the parameters of baseline models to ensure the best performances. We finally compare the performance

between baseline models and the proposed models. In particular, we compare the precision and overall

accuracy between baseline models and our models.

Fig. 3.8 shows the comparative results between the proposed models and the baseline models. The

performance of the models by Calefato et al. [20] is found comparatively poor than the others. Their accuracy

and precision were found in the range of 50–52% for all the four algorithms. The strength of the features used

by Saha et al. [102] is relatively higher than the features of Calefato et al. We see that the models trained

with the features by Saha et al. outperform than that of the models by Calefato et al. The performance of

the models by Saha et al. is about 1–7% higher than the models by Calefato et al. The overall accuracy of the

models by Saha et al. is found 53–55% and the precision is found 53–59%. However, the proposed machine

learning models outperform both the baseline models. The precision of the proposed models is about 6–25%

higher than the models by Saha et al., and about 9–27% higher than the models by Calefato et al. Proposed

models also have the improvement of overall accuracy between 5–25% from Saha et al., and 7–27% from

Calefato et al.

We further attempt to investigate why the baseline models fail that much in predicting unanswered

questions. We manually investigate 50 cases where both the baseline models fail. Our analysis shows that

predictions often go wrong due to the length of the questions. Both the baseline studies consider the character

length of the questions (title + body + code segment). Their models often detect the questions having long

length as answered. However, our analysis suggests that questions with short texts and long code segments

are often remain unanswered. In our study, we use the text-code ratio that might not suffer as the length

of the questions do. The presence of code also misleads the baseline models. The models are trained in a

way that the questions with code segment are more likely to be answered. However, we find several incorrect

cases where questions do not have any code segments, and yet they get answered. We also find that the

attributes such as the number of tags, presence of external link, submission time have almost identical values

for both the question classes. Thus the baseline models find difficulty while classifying questions based on

these attributes.

Generalizability of the Models’ Performance. In our study, we attempt to extract such features that

are not dependent on any programming languages. Here, we test the models to confirm the generalizability

of their performance and the strength of the features. We select questions from two different programming

languages that are not used to train our models. In particular, we collect 100K questions (50K unanswered

+ 50K answered) of C++ programming language and 8K questions (4K unanswered + 4K answered) of
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Table 3.4: Model Performance with C++ and Go

Technique Question
Precision Accuracy

C++ Go C++ Go

Decision Trees
Unanswered 66.02% 65.28%

67.40% 66.0%
Answered 69.03% 66.74%

Random Forest
Unanswered 64.10% 62.38%

66.3% 64.02%
Answered 69.31% 66.17%

Go programming languages. Go is an emerging programming language and thus we could not collect more

questions. We select Random Forest and Decision Trees to test with C++ and Go since the experimental

results (Table 3.3) show that they are well suited for our dataset and features.

The precision and accuracy of the models for C++ and Go reported at Table 3.4 show that the models

perform reasonably well, although they lose some precision and accuracy (less than 15%). Our further

investigation reveals a few causes that might explain why the performance has declined. We see that the

code segments included in the questions related to the Go language are comparatively small than that of

the Java and C# languages. On the contrary, the length of C++ code segments are fairly long but self-

explanatory. The users often add a brief description. Moreover, Go is an emerging language, and most of

the questions discuss theory and do not include any code segments. These scenarios above might affect the

attributes such as text-code ratio, text readability. Despite having such discrepancies, the proposed model

can predict the unanswered question with a maximum of about 66% precision and 67% accuracy. Such

findings confirm the general acceptance of our features and models in predicting the unanswered questions.

3.4 Key Findings & Guidelines

Our study provides several insights that explain why a question might fail to receive answers at SO. These

insights may guide the users of SO, especially, novice users to improve their questions and increase the chance

of getting answers.

(F1) Question format matters. Proper formatting of the description in a question is essential. In

particular, the different elements (e.g., text, code, hyperlink) are recommended to place inside the appropriate

HTML tags to improve their visibility and readability. Otherwise, the question might be hard to read, which

could force the expert users to leave the questions without answering.

(F2) Attach code segment when required. If a question describes a code related issue, it should

include an example code segment to support the problem statement. We find that users often request for code

segments in the comment thread while trying to answer the code related questions. More importantly, one

should include non-redundant code that is able to reproduce the reported issues in the question description.

According to an earlier finding, in SO, about 22% of the code segments fail to reproduce the reported issues
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in their questions [75]. In our manual analysis, we found that such lack of reproducibility could also leave a

question unanswered.

(F3) Improper and non-technical description hurts. A clear description might prompt the expert

users to answer a question. According to our investigation, we also find that the usage of appropriate technical

terms is important. An ambiguous and non-technical description of a technical problem might mislead the

users and thus hurt its chance of getting the solutions.

(F4) SO is not suitable for all topics. Several topics are more likely to be unanswered in SO.

According to our analysis, top unanswered topics are primarily related to programming IDEs, libraries, and

frameworks. A lot of unanswered questions from these topics are related to internal configurations and

algorithms. To answer such questions, the creator and the maintaining team need to be active users at SO

which they are not. Hence, many unanswered questions are redirected to Github issues through comments

[82] where the members from the development team are involved. In addition to that, questions related to

the hardware configuration of network devices are also more likely to be unanswered. Such questions can

be resolved by IT experts who are not that much active at SO. During manual analysis, we see that 8% of

unanswered questions are directed to other sites. Thus, the users should (1) avoid submitting the off-topic

questions and (2) carefully select the tags for their questions.

(F5) Multiple issues in a single question hurts. Some users often discuss multiple issues in a single

question, which is not recommended by the community members. According to our investigation, question

with multiple issues or concerns often fail to receive the answers.

(F6) Unanswered questions are not always really unanswered. We find that several questions

received working solutions in their comment threads. According to our manual investigation, 5% unanswered

questions receive answers in the comment threads. Thus, although many questions are seen as unanswered,

they are actually answered.

(F7) Miscellaneous findings. We also find several other causes that might leave the questions unan-

swered. First, several questions remain unanswered since they discuss outdated technology. Second, many

unanswered questions were found with misleading titles. Third, users sometimes requested for suggestions

instead of discussing problems clearly and asking particular solutions. Forth, some questions were perceived

as duplicates to other questions.

3.5 Related Work

Several studies [5, 93, 94, 102] focus on classifying the SO questions. Saha et al. [102] introduce machine

learning models to classify unanswered and answered questions of SO. Their models depend on the attributes

(e.g., view count and scores) that are not available during the submission of questions. Thus, their models

might fail to predict the unanswered questions during their submission. On the contrary, we investigate the

question characteristics that are available during the submission of a question and construct prediction models
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to predict the unanswered questions. Saha et al. [102] also perform an initial investigation to understand why

the questions of SO remain unanswered. They report that the lack of user interest is a major factor that might

leave a question unanswered. We find that the user’s interest often depends on the topics of the questions.

The answering rate of several topics is fairly high, whereas several topics suffer from a low answering rate.

We perform a comparative study on the question characteristics between answered and unanswered questions

and report the top 10 topics (i.e., tags) which are more likely to remain unanswered.

Asaduzzaman et al. [5] conduct qualitative analysis to understand why questions of SO remain unan-

swered. They report several characteristics (e.g., impatient users) which are difficult to measure in practice.

Besides, they do not provide any classification or prediction models for separating unanswered questions from

the answered ones. Thus the strength of their features in classifying questions is not well understood. We

automatically compute eight important features (e.g., topic response ratio) of SO questions and use them to

predict the unanswered question. Furthermore, our prediction model outperforms two baseline models.

Calefato et al. [20] study a set of factors that are likely to influence the chance of getting answers by the

questions at SO. They analyze about 87K questions and suggest that four factors might affect the chance

of obtaining successful answers to the SO questions. They are presentation quality (e.g., presence of code

snippets, question length), sentiment polarity (e.g., positive, negative), question posting time (e.g., day of

week), and user reputation. According to our investigation, user reputation is one of the important attributes

to predict unanswered questions. However, our feature set is more powerful for predicting the unanswered

questions during their submission than those of Calefato et al. [20].

Ponzanelli et al. [93, 94] present an approach to classify the questions according to their quality (i.e.,

score). Our investigation reports that about 99% of questions having negative scores receive one or more

answers. On the other hand, about 11% of questions which have positive score do not receive any answer [87].

Therefore, the classification model based on the score might not perform well in predicting the unanswered

questions. Although a few of the features (e.g., metric entropy) are common between their model and ours,

we extract more appropriate features to predict the unanswered questions.

Rahman and Roy [97] propose a model for predicting unresolved questions (i.e., no submitted answers were

accepted as solutions by the questioner) of SO. Their feature analysis gives a key insight for understanding

the difference between unresolved and resolved questions. We use a few of their features (e.g., topic entropy)

in detecting unanswered questions. However, the remaining features (e.g., answer rejection ratio) are only

effective in detecting the unresolved questions rather than the unanswered questions.

Chua and Banerjee [23] develop a conceptual framework known as the Quest-for-Answer to explain why

some questions in Q&A sites draw answers while others remain ignored. They attempt to validate their

framework empirically using 3000 questions (1500 unanswered + 1500 answered). However, some of their

features are difficult to measure in practice (e.g., user politeness). A few of them (e.g., view count, question

age) are also not available during the submission of questions. The remaining features (e.g., title length,

description length) were employed by Calefato et al. [20]. However, our models outperform the models
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of Calefato et al. Wang et al. [135] investigate the factors for fast answers in technical Q&A sites. We not

only investigate the causes of unanswered questions but also deliver machine learning models that can predict

unanswered questions during their submission. To the best of our knowledge, no existing models are available

to predict the unanswered questions during question submission time, which makes our work novel.

3.6 Threats to validity

This section discusses threats to the validity of this study. First, the baseline and the proposed models are

built based on the four machine learning algorithms. One can argue that the results can vary with other

algorithms. Saha et al. [102] use the Naive-Bayes algorithm in their study. However, the algorithm does

not perform well in their study, and thus we discard this algorithm from our experiment. Furthermore, the

algorithms used in our study are widely used by a number of related studies.

Second, we use five different quantitative metrics to measure text readability. Other text readability

metrics can have different impacts on the results of our proposed models. However, we also analyze the result

with other readability metrics and find that our reported metrics perform better than them.

Third, during the manual investigation of answered and unanswered questions in RQ2 (Section 3.3.2),

the participants remain aware of the status of the questions. One can argue that, if the analysis were

performed keeping the participants blind, the bias could have been avoided. However, we also make one of

the participants blind about the status of the questions and perform manual analysis on a sample set. We do

not find any significant inconsistency between blind and non-blind observations. Thus, such a threat might

have been mitigated.

Finally, to balance the answered and unanswered questions in the dataset, we select random samples from

the answered questions and all from the unanswered questions. Statistical conclusion validity might arise due

to under-sampling the data [64]. However, we perform statistical tests routinely to justify our conclusions

and thus avoid such threats.

3.7 Conclusion

A significant part of the questions of SO do not receive any answers. Predicting them beforehand can

help one improve the questions and thus receive the answers in time. In this study, we contrast between

unanswered and answered questions of SO quantitatively and qualitatively. We analyze 4.8 million questions

and build models to predict the unanswered questions during their submission. Our contribution in this

study is threefold. First, we conduct a quantitative analysis and find that topics discussed in a question, the

experience of the question submitter, and readability of question texts are likely to predict whether a question

will be answered or not. Second, we manually investigate 400 questions (200 unanswered + 200 answered)

and demonstrate that our qualitative findings support the quantitative findings. Our manual analysis also

reveals several non-trivial insights (e.g., avoid multiple issues in a single question) that could guide novice
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users to improve their questions. Third, we develop four machine learning models to predict the unanswered

questions. Our models can predict the unanswered questions during their submission time with about 78%

precision and about 79% overall accuracy, which are significantly higher than that of two baseline models.

The models also perform reasonably well when we test them with questions from two different programming

languages (i.e., Go, C++). Such performance also suggests the robustness of our models and features.

38



4 Can Issues Reported at SO Questions be

Reproduced? An Exploratory Study

The first study in Chapter 3 investigates the unanswered and answered questions, both manually and

programmatically. In particular, compare unanswered questions with answered questions and attempt to

find questions of SO remain unanswered. We find that topics discussed in the question, the experience of

the question submitter, and readability of question texts could often determine whether a question would

be answered or not. However, the irreproducibility of issues reported at the questions might prevent the

questions from getting answers or appropriate questions. It should be noted that in the first study, we did

not focus much on the reproducibility of the question issues that also may explain why questions of SO

remain unanswered or unresolved. This chapter thus reports an exploratory study on the reproducibility of

the issues discussed in 400 questions of SO. We also investigate the correlation between issue reproducibility

status (of questions) and corresponding answer meta-data, such as the presence of an accepted answer.

The rest of the chapter is organized as follows. In Section 4.2, we discuss two examples that motivate

our idea of issue reproducibility. Section 4.3 discusses our study methodology. In Section 4.4, we classify

reproducibility status of issues at SO questions, explore the challenges behind issue reproducibility, and then

investigate their correlation with answer meta-data. Several key findings are discussed in Section 4.5. Section

4.6 focuses on the threats to validity, Section 4.7 discusses the related work and finally, Section 4.8 concludes

the study.

4.1 Introduction

SO has become the ultimate platform for developers [93]. The number of users and the questions posted at

SO are increasing exponentially [32]. A large number of questions contain such code segments that could

potentially have issues (e.g., error, unexpected behavior) [127]. Once submitted, users at SO generally

attempt to reproduce the programming issues discussed in the questions, and then submit their solutions.

Reproducibility means a complete agreement between the reported issues and the investigated issues [137].

Unfortunately, such programming issues could not be always reproduced [76, 107] by other users which might

prevent these questions from getting appropriate and prompt answers. Such scenario might also explain the

13.36% unanswered and 47.04% unresolved questions at SO [5, 32, 97]. Given these major challenges in

question answering, a detailed investigation is warranted on the reproducibility of the code level issues that
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are reported at SO questions. Several existing studies [46, 147] investigate the usability and executability of

the code segments posted on Q&A sites. Yang et al. [147] extract 914,974 code segments from the accepted

answers of SO and analyse their parsability and compilability. However, their analysis was completely

automatic, and they did not address the challenges of issue reproducibility. Horton and Parnin [46] analyze

the executability of the Python code segments found on GitHub Gist system. They identify several flaws (e.g.,

import error, syntax errors, indentation error) that prevent the execution of such code segments. However, a

simple execution success of the code does not necessarily guarantee the reproduction of the issues discussed

at SO questions. Thus, their approach also fails to address the reproducibility challenges that we are dealing

with. In short, all challenges of reproducibility could not be resolved using only automated analysis. Thus,

there is a marked lack of research that (1) carefully investigates the challenges of issue reproducibility (of SO

questions) and (2) develops automated approaches to help overcome such challenges.

In this study, we report an exploratory study on the reproducibility of the discussed programming issues

at 400 questions from SO. For each of these questions, we follow three logical and sequential steps. First,

we attempt to understand the issue of the question by analyzing its code segment and the associated textual

description. Second, we clone the code segment in our development environment (e.g., IDE), and attempt

to reproduce the reported issue. Third, we record our findings on the reproducibility of the issues from each

of the questions. In the case of failure, we investigate why the issues could not be reproduced. We spent a

total of 200 man-hours for our analysis in this study. Our findings from this study are two-fold. First, we

find that 68% issues reported at SO questions can be reproduced and only 32% of them can be reproduced

using the verbatim code from SO. The remaining code segments warrant either minor or major modifications

in order to reproduce the issues. Second, we investigate the relationship between the reproducibility status

of the issues (from questions) and the answer meta-data (e.g., accepted answer). We found that a question

with reproducible issues has more than three times higher chance of getting an acceptable answer than the

question with irreproducible issues. Our in-depth investigation and findings establish issue reproducibility

not only as a question quality paradigm but also encourage automated tool support for improving the code

segments submitted at SO questions. We answer three research questions and thus make three contributions

in this study as follows:

(RQ1) What are the challenges in reproducing the issues reported at SO questions? How

can issue reproducibility be measured? We conduct extensive manual analysis and investigate what

types of actions are needed to reproduce the issues reported at SO questions. We classify the reproducibility

status into two major categories (reproducible, irreproducible) and also discuss why the reported issues could

not be reproduced using the submitted code examples.

(RQ2) What proportion of reported issues at SO questions can be reproduced successfully?

We conduct a detailed statistical analysis to determine what percentage of the issues can be reproduced and

what percentage cannot be reproduced even after performing major modifications to their corresponding

code segments.
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(RQ3) Does reproducibility of issues reported at SO questions help them get high-quality

responses including the acceptable answers? We conduct a detailed investigation and determine the

correlation between issue reproducibility (of questions) and corresponding answer meta-data such as the

presence of an accepted answer, the time delay between the posting of a question and accepted answer, and

the number of answers.

4.2 Motivating Examples

Code segments submitted as a part of the questions at SO might always not be sufficient enough to reproduce

the reported issues. Let us consider the example question in Fig. 4.1. Here, the user attempts to reset all the

variables while starting a new game. He discovers that the code is not working as expected and some of the

variables are retaining their old values. Unfortunately, this issue cannot be reproduced since essential parts of

the code are missing. For example, one user commented – “Can you post more code? The Game class? The

class that contains the restart() method?” – while attempting to answer the question. In SO, this question

has failed to receive a precise response. Even though the above code (i.e., Fig. 4.1) could be made parsable,

compilable and executable with all necessary editing, the above reported issue could not be reproduced easily

due to its complex nature. Thus, the automated analyses done by the earlier studies [46, 147] might also not

be sufficient enough to overcome all the challenges of this reproducibility.

Let us consider another example question as shown in the Fig. 4.2. Suppose Alice, a software developer,

wants to answer this question. First, she attempts to identify the issue and soon understands that the user is

attempting to capture a person’s full name (e.g., John Doe). Unfortunately, the user is getting only the first

part of the given name (e.g., John). He invoked next() method of the Scanner class to take the input. In

order to answer, Alice first copies the code segment to the IDE and then finds that the code does not even

parse. As a result, the IDE returns several parsing and compilation errors. Fortunately, by performing several

edits (e.g., addition of a demo class and main method) Alice could reproduce the stated issue. Similarly, this

issue was also reproduced by the other users of SO, and the question received a high-quality answer within

a couple of minutes. As the solution suggests, the user should have used nextLine() method instead of

next() to avoid the reported issue.

4.3 Study Methodology

Fig. 4.3 shows the schematic diagram of our conducted exploratory study. We first randomly select 400

questions of SO, and then attempt to reproduce their discussed programming issues. In particular, we use

their submitted code segments, perform a list of edits, and then attempt to make them reproduce the reported

issues. The following sections discuss different steps of our methodology.

1https://stackoverflow.com/questions/798184
2https://stackoverflow.com/questions/19509647
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Figure 4.1: An example question1 of SO. (Reproducibility status: Irreproducible)

Figure 4.2: An example question2 of SO. (Reproducibility status: Reproducible)

Figure 4.3: Schematic diagram of our exploratory study.
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Figure 4.4: Selection of dataset for our study.

4.3.1 Dataset Preparation

Fig. 4.4 depicts the data collection steps. We collect November 2018 data dump of SO from Stack Exchange

site [32]. In particular, we select Java related questions since Java is one of the most popular and widely

used programming languages. We collect a total of 85,876 questions that have only one tag namely <java>

from the data dump. It should be noted that we impose this restriction on the question tags to (1) choose

purely Java related questions and (2) keep our analysis simple. We then discard such questions that do not

have any code segments. Since we deal with the reproducibility of the reported issues, the presence of code

segments in the question is warranted. We thus consider only such questions that have at least one line of

true Java code. According to our investigation, 70,103 out of 85,876 (i.e., 81.63%) questions have at least

one line of code. We identify such questions using specialised HTML tags such as <code> under <pre>, and

select them for our study.

Questions containing code segments might not always have an issue that needs to be reproduced during

the answering time. Programmers might even seek general help or ask for more efficient source code than the

submitted code segment. However, in this study, we target only such questions that discuss at least one issue

each and contain at least code segment each. We thus carefully analyse the questions, and look for several

keywords such as - error, warning, issue, exception, fix, problem, wrong, fail in the question texts. We then

identify a total number of 30,528 questions that might have an issue. We randomly select 1,000 questions

from them for manual analysis.

During manual analysis, we found a significant number of duplicate questions. In such cases, we consider

the original questions with explicit issues and discard the duplicate questions. We also discard a few questions

that were closed by SO due to their low quality. Overall, we manually investigate 400 Java related questions

from 1000 random samples that meet our selection criteria, and answer our research questions.

4.3.2 Environment Setup

We use Eclipse Oxygen.3a Release (4.7.3a)3 and NetBeans 8.24 to execute the code segments

and reproduce the programming issues. Eclipse and NetBeans are two popular IDEs that are frequently

3https://www.eclipse.org
4https://netbeans.org
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used for Java programming. When the issues are related to compilation errors, we first employ javac to

detect the compilation problems, and then use Eclipse and NetBeans to reproduce the issues. In particular,

we attempt to find an exact match between our error messages and the ones mentioned in the questions of

SO. We use Java Development Kit (JDK)-1.8 as our development framework, JavaParser5 as our

custom AST parser, and MySQL Workbench6 8.0 as our example database for this study. We use a desktop

computer having 64-bit Windows 10 Operating System (OS) and 16GB primary memory (i.e., RAM). We

allocate 4GB as Java memory (Java heap for the IDE.).

4.3.3 Qualitative Analysis

Table 4.1
List of Code Editing Actions

- Exception handling - Invocation of methods

- Code migration - Debugging

- Addition of demo classes and methods

- Inclusion of native and external libraries

- Object creation, identifier declaration and initialisation

- Deletion of redundant and erroneous statements

- External file, database and dataset creation

We, two of the authors, took part in the manual analysis and spent a total of 200 man-hours on the 400

questions. We follow a two-step approach for reproducing the issues reported at SO questions. First, we

attempt to understand the reported issues clearly and identify the key problem statements from the question

description. We also gather the supporting data such as input-output values, file format from the question

texts. Second, using the code snippet and supporting data we attempt to reproduce the reported issues. We

perform trivial, minor and major edits on the code segments in order to reproduce their issues. Table 4.1

shows our list of editing actions. We discuss each of the actions that are taken during qualitative analysis to

make the code segments reproduce the reported issues as follows:

(a) Addition of Demo Classes and Methods: In SO, users often submit only the code examples of interest

which are neither complete nor compilable. We wrap such code segments with a demo Java class and then

place them under a main method. Main method acts as the entry point to the program.

In some cases, the code segment contains statements related to the creation of an object of a class or

method invocation using an object while the definitions of the class and the method are absent. For instance,

one of our code snippets has the following statements:

5http://javaparser.org
6https://www.mysql.com/products/workbench
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A obj A = new A(x,y);

obj A.add();

We see that the definition of the class A is absent. In order to make this code compilable, we de-

fine the class, add a constructor and also define the method add() within the class. Although the actual

implementation is unknown, such modifications help us to resolve the compilation errors.

(b) Inclusion of Native and External Libraries: JDK comes with many libraries that help developers

accomplish many of the common tasks. However, developers frequently use external libraries for various

specialized tasks. In SO questions, code segments that use classes and methods from native or external

libraries often miss the import statements. We add the import statements associated with native libraries

with the help of the IDE (e.g., Eclipse). In the case of external libraries, we look for relevant library references

in the question texts. If such libraries were found, we include them in the IDE and then add the necessary

import statements.

(c) Exception Handling : Developers often submit question claiming that the code generates unexpected

exception. We also find some questions whose issues are not related to Java exception but their code throws

one or more exceptions. In that cases, we resolve them using appropriate exception handling.

(d) Object Creation, Identifier Declaration and Initialization: Undeclared identifier is one of the common

compilation errors for the code segments submitted at SO. We declare the unresolved identifiers according

to their types and initialize them with appropriate values according to the question specifications.

(e) Invocation of Methods: We identify several code snippets that have user-defined methods, but the

methods were not invoked from anywhere. We thus add extra statements to call the methods if the issue

reproduction warrants the execution of these methods. We also add the appropriate parameters to call the

user-defined methods.

(f) Deletion of Redundant and Erroneous Statements: We find several code segments that contain re-

dundant and even erroneous code statements which are not related to the reported issues. We delete such

statements or simply comment them out so that they are ignored by compilers and interpreters.

(g) Code Migration: We identify several code snippets that use outdated APIs which are not compatible

with our environment. We replace the outdated APIs with the equivalent updated APIs. In some cases, we

also invoke extra APIs to make the code compilable.

(h) External File, Database and Dataset Creation: We identify several code segments that accept input

from .txt or .csv file. In such cases, we create one or more necessary files in our local drive and add the

sample data from the question so that we can verify the program correctness. Besides text file or spreadsheet,

some programs require image file especially which are related to User Interface (UI). In such cases, we create

images with specified format and dimension, and then execute the program. We also create a demo relational

database (e.g., MySQL) and necessary tables when the code segments deal with database operations. Needless

7https://stackoverflow.com/questions/53159149
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(a) An example question from SO with reproducible issue

(b) The final code after necessary editing

Figure 4.5: An example question7 from SO and the final source code after editing. (Reproducibility
status: Reproducible)
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to say, we use the sample dataset provided by the question.

(i) Debugging : We identify several code segments that warrant for debugging to reproduce the issue.

Sometimes programmers claim that they are getting unexpected behaviour from the code. For example, a

developer reports that one of the if statements is never executed i.e., the expression of the if is always been

false. Then we debug the code and check whether the if statement is really executed. When programmers

claim that they are not getting expected values from an identifier, we usually print the value or debug the

code to check the run time value of the identifier.

4.3.4 An Example of Issue Reproduction

Let us consider the question shown in the Fig. 4.5a. First, we attempt to identify the issue and soon under-

stand that the user is trying to calculate the time delay (in days) between two given dates. Unfortunately,

the user did not get the expected results for several input values. We then copy the code segment in the IDE

and find that the code does not even parse. As a result, the IDE returns several parsing and compilation

errors. Fortunately, by performing several actions we can reproduce the findings. First, we add a demo

class (Fig. 4.5b, line No. 7) and place the method daysBetweenDatesWithSignwith within the class.

Second, we add a main method (Fig. 4.5b, line No. 8). Third, we create four String objects (Fig. 4.5b,

line No. 9-12) and initialize them with sample values according to the question description. Fourth, we

then create an object fmt (Fig. 4.5b, line No. 13) of the class SimpleDateFormat to invoke the parse

API that converts the text values stored in date1, date2, date3 and date4 to the type Date. Since

SimpleDateFormat throws ParseException, we also handle the exception (Fig. 4.5b, latter part of line

No. 8). Afterward, we invoke the given method and keep the return values in d1 and d2 of type long (Fig.

4.5b, line No. 14-15). Two inline variable declarations are also required here. We import the libraries for

the classes SimpleDateFormat, Date, ParseException, Instant and also the enum ChronoUnit

(Fig. 4.5b, line No. 2-6). We then execute the modified code, print the outputs and then check whether the

outputs match with the ones reported by the user. Interestingly, the issue was reproducible.

4.4 Study Findings

We collect 400 questions from SO (Section 4.3.1), and analyse their code segments and textual descriptions.

In particular, we attempt to reproduce the issues reported in these question texts by executing their corre-

sponding code segments. We also ask three research questions in this study, and answer them carefully with

the help of our empirical and qualitative findings as follows:

4.4.1 Answering RQ1

RQ1(a): What are the challenges in reproducing the issues reported at SO questions? We

attempt to reproduce the reported issue discussed in the questions using the given code segment and other
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supporting information (e.g., data, instruction). However, we fail to reproduce them due to several non-

trivial challenges. First, programmers often submit code segments that use methods from the classes which

are not defined in the code segment. Despite adding appropriate class and method definitions, many issues

cannot be reproduced. Second, code segments often miss such statements that are essential to reproduce the

issues. For instance, reproducibility of an issue depends on the values of an array which are absent from

the code segment. We could not reproduce such issues with the sample array values. Third, dependency

on the external libraries is another major challenge towards issue reproducibility from the submitted code.

In many cases, we do not find any hints that point to the appropriate libraries. We also identify such code

segments that are too short to reproduce the issue. Too short code is also identified as the reason for getting

no answer to SO questions [5]. We also identify several code segments that could not reproduce the issues

due to their complex interactions with UI elements, databases and external files. We find a few segments

containing outdated code (e.g., deprecated API) that cannot be replaced by alternative one. Several code

segments are too long and noisy to reproduce the issues.

Table 4.2 shows the major challenges that prevent the reproduction of issues reported at SO questions.

A question might experience multiple challenges. We note that half of irreproducible issues are plagued

by undefined classes, interfaces and methods. That is, they are used in the code segments without proper

definitions. We also note that about 40% issues could not be reproduced due to their missing import

statements and missing external libraries.

Table 4.2
Challenges Preventing Issue Reproduction

Identified Reason Percentage

Class/Interface/Method not found 51.00%

Important part of code missing 22.99%

External library not found 20.69%

Identifier/Object type not found 14.94%

Too short code snippet 12.64%

Miscellaneous 6.90%

Database/File/UI dependency 4.60%

Outdated code 1.15%

RQ1(b): How can issue reproducibility be measured? We divide the issue reproducibility status

(of questions) using two different dimensions. They are the success status of reproducibility and level of

editing efforts in reproducing the issues reported at SO questions. Reproducibility status can be classified

into two major categories: reproducible and irreproducible. In the following section, we discuss both categories

in detail.

8https://stackoverflow.com/questions/1715533
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Figure 4.6: An example question from SO8 (Reproducibility status: reproducible without modifi-
cation)

Reproducible (REP): Reproducibility of issues usually requires some modifications to the code seg-

ments. In some cases, issues can be reproduced from the given code segments without any modification. We

therefore classify the reproducible status into three more sub-categories based on the complexity of the code

level modifications, the level of human efforts spent and the time required to reproduce the issue. Fig. 4.7

shows our sub-classification of the reproducible category.

- Reproducible without Modification (RWM): The given code snippet is complete, stand-alone, and no

explicit action is required to reproduce the issue. Fig. 4.6 shows a simple example of reproducible issue.

Here, the user assigned null to a String object and then added to another string. Not surprisingly, he found

that the null was also printed with the other string. To reproduce this issue, we just copy the code segment,

paste it in the Eclipse IDE and then successfully reproduce the same output as noted in the question. Many

of these issues are reported by the novice developers.

- Reproducible with Minor Modification (RMM): The issue can be reproduced from the code by performing

one or more modifications that are comparatively less complex and less time consuming. Box A shows the

low cost modifications added to the code. We spend about 15–30 minutes to reproduce each programming

issue from this sub-category.

- Reproducible with Major Modification (RMJM): The reported issue can be reproduced from the code

segment by performing one or more complex and time consuming modifications. Box B shows the high cost

modifications. We spend about 30–60 minutes to reproduce each issue from this sub-category. Fig. 4.5 shows

an example of reproducible issue where major modifications are performed on the code to reproduce the

reported issue.

Irreproducible (IREP): These issues are less likely to reproduce even after several minor and major

code level modifications. As mentioned above, two of the authors took part in the manual analysis. When one

fails to reproduce the issue, the same question is analysed by the other author. If both fail, we then conclude

the issue as irreproducible. In some cases, we spent even a few hours for a single question. Fig. 4.1 shows

an example where the issue could not be reproduced since important details of the code/implementation are
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missing. Table 4.2 shows our identified challenges that prevent a programming related issue from reproducing.

Reproducibility Status

Reproducible

Without
Modification

Minor
Modification

Major
Modification

Irreproducible

Figure 4.7: Classification of issue reproducibility status

Box A : Minor Modifications

; Addition of a demo class or a main method or a method definition ; Creation of a constructor

; Declaration of an identifier/object whose type can be predicted easily. ; Initialization of an

identifier/object by a default value or a sample value from the question ; Inclusion of the import

statements (of native libraries) ; Handling an exception ; Resolve an external library dependency

when the the code segment contains the import statements of them ; Resolve the less complex

compilation errors ; Creation of the text/image/csv files ; Addition of sample values to the files

from the question discussion ; Minor changes in the existing code ; Invoke a method with no

parameters or known parameters.

Box B : Major Modifications

; Resolve external library dependency when the import statements are not in the code segment.

; Creation of database and table entries according to the problem description ; Major changes in

existing code snippets ; Declaration of an identifier/object whose type cannot be predicted easily

and their initialisation that demand code analysis ; Addition of sample input values to the files that

are absent from question discussion ; Invoke a method with parameters where sample parameters

are absent from the question description ; Code debugging

Besides the major classification above, we also consider the appropriateness of developers’ claims about

issues during the question submission. We found that there exist two more classes of issues that could not

be reproduced as well. We discuss them in detail as follows:

Inaccurate Claim (IAC): In some cases, the stated programming issues in the SO questions might not

be accurate. We call these issues Inaccurate Claim. The question shown in the Fig. 4.8 shows an example

of inaccurate claim about programming issue. Here, the user raised an issue that he could parse the string

like ?var=val but could not parse the string like var=val. When we attempt to execute this code in our

IDE, we find that both strings can be parsed successfully. Even two programmers also commented as follows:

’Sorry, that code doesn’t fail’ and ’This works for me too’. We find similar occurrences with run-time errors,

compiler errors, unexpected behaviour reported by the users at SO questions. Such anomalies could have
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Figure 4.8: An example question of SO9 with inaccurate claim about the programming issue

several explanations. First, this might happen due to the difference in the development environment. Second,

users might fail to locate the defective code, and hence, they submit the wrong code fragments.

Ill-Defined Issue (IDEF): Ill-defined issues refer to the problems which cannot be reproduced consistently

under any circumstances. That is, the question submitter does not specify the context precisely in which

situation the alleged programming issue encounters. For instance, a user claimed that he was getting run-

time exception after clicking buttons. During code execution we find several buttons in the user interface and

some of them trigger runtime exceptions. However, since the user does not specify a button, the reported

issue could also not be reproduced successfully.

4.4.2 Answering RQ2

What proportion of reported issues at SO questions can be reproduced successfully? We classify

the issue reproducibility status into two major categories which are again classified into further sub-categories.

We investigate the reproducibility of programming issues discussed at 400 randomly sampled questions from

SO. Fig. 4.9 shows the statistics on the reproducibility statuses of the questions. According to our analysis,

270 (67.50%) issues among 400 can be reproduced. On the contrary, 87 (21.75%) issues cannot be reproduced

due to the challenges shown in Table 4.2. We find that 7.25% issues are claimed inaccurately. This might

happen due to the lack of programming experience or proper analysis of the code during question submission.

Unfortunately, we could not determine the reproducibility of issues for 14 (3.50%) questions. The users often

fail to provide the appropriate contexts in their questions which are required to reproduce the reported issues.

We thus call them as ill-defined issues (IDEF).

The ratio of reproducible status according to the effort level is shown in Fig. 4.10. A half of them

require minor modification whereas 20.74% issues require major modification to make the code snippets

capable of reproducing the reported issues. Fortunately 32.22% snippets can reproduce the issues without

9https://stackoverflow.com/questions/750557
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Figure 4.9: Issue reproducibility status. REP = Reproducible, IREP = Irreproducible, IAC =
Inaccurate Claim, IDEF = Ill-Defined Issue

RWM RMM RMJM
0

20

40

60

80

32.22%

47.04%

20.74%

Modification Effort Level

R
ep

ro
d

u
ci

b
le

Is
su

es
(%

)

Figure 4.10: Reproducible issues and modification effort level. RWM = Reproducible Without
Modification, RMM = Reproducible with Minor Modification, RMJM = Reproducible with Major
Modification

any modifications.

4.4.3 Answering RQ3

Reproduction of a programming issue discussed in the question texts allows one to experience the issue first

hand. Such experience could help the users submit appropriate answers to the questions more promptly and

more accurately. We thus analyze the relationship between reproducibility status of the reported issues at SO

and the answer meta data such as presence of accepted answer, time delay between question and answer, and

number of questions. In particular, we divide RQ3 into three sub-questions, and answer them with detailed

statistics as follows:

RQ3(a): Does reproducibility of issues discussed at SO questions encourage the acceptable

answers? Table 4.3 shows the confusion matrix where the rows represent the reproducibility status (e.g.,

reproducible or irreproducible) and the columns represent the presence of accepted answer (e.g., present or
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Table 4.3
Issue Reproducibility Status vs. Presence of Accepted Answer (AA)

AA Present AA Absent Total

Reproducible 201 (74.44%) 69 (25.56%) 270

Ireproducible 18 (20.69%) 69 (79.31%) 87

Total 219 138 357

Table 4.4
Issue Reproducibility Subcategory vs. Presence of Accepted Answer (AA)

AA Present AA Absent Total

Without Modification 66 (75.86%) 21 (24.14%) 87

Minor Modification 102 (80.31%) 25 (19.69%) 127

Major Modification 33 (41.07%) 23 (58.93%) 56

Ireproducible 18 (20.69%) 69 (79.31%) 87

Total 219 138 357

absent). We note that 74.44% (201 out of 270) questions whose code segments are capable of reproducing

the reported issues receive acceptable answers (i.e., solutions). On the contrary, only 20.69% (18 out of 87)

questions with irreproducible issues receive the acceptable answers. Thus, the reproducibility of question

issues increases the chance of getting a solution more than three times. We examine the correlation between

the two categorical variables - reproducibility status and accepted answer presence. We use statistical test

namely Chi-Squared test to measure the independence of these two categorical variables shown in Table 4.3.

We find statistically significant p-value (p − value = 0 < .05 ). Thus, there is a strong positive correlation

between the issue reproducibility of questions and their chance of getting the acceptable answers.

We also further analyse the reproducibility status based on effort level and determine their correlation

with the accepted answer presence as shown in Table 4.4. We again find statistically significant p-value

(p− value = 0 < .05) from the Chi-Squared test. Thus, the human efforts in reproducing the question issues

are significantly correlated with the chance of getting the accepted answer. From the Table 4.4 we see that

there is 75.86% (66 out of 87) chance of getting accepted answer when the issues can be directly reproduced

from the verbatim code segment. On the contrary, the chance reduces to 58.93% (33 out of 56) when the

submitted code needs major modifications. Surprisingly, the chance of getting accepted answer is highest

(80.32%) for the questions whose code fragments require minor modifications to reproduce the issues. We

thus further investigate this interesting scenario with more manual analysis. Three factors were identified

that might explain such inconsistency:

Redundant and long code: The users at SO often submit questions that contain unnecessarily long

code. Such questions often fail to get appropriate answers even though their code is capable to reproduce the
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reported issues without any modifications. According to our investigation, such code segments have more

than 72 lines of code. We believe that such long code places extra burden on the other users during question

answering. Thus, despite being reproducible without modifications, such code actually decreases the chance

of getting an accepted answer.

Potential problem statements are not identified: Users often fail to mention the potential prob-

lematic statements within the submitted code in their questions. This increases the analysis time for the

other users at SO while answering the question. Thus, despite the verbatim code segments being able to

reproduce the question issues (without modifications), they might not receive the accepted answers.

Novice user: Sometimes novice users add a long code (e.g., an entire course assignment) without proper

analysis. They even do not discuss about the issues properly. According to our analysis, 50% of users who

added a long and redundant code and did not get an exact answer have a reputation score below 20.

Figure 4.11: Time spent for reproducible and irreproducible issues

RQ3(b): Does reproducibility of issues discussed at SO questions reduce the time delay of

getting the accepted answers? According to RQ3a, there is a strong correlation between reproducibility

status of question issues and the chance of getting an accepted answer. In fact, the chance is more than

three times higher for the reproducible issues. In this section, we investigate whether the delay of getting the

accepted answer could be influenced by the reproducibility status of the submitted issues at SO questions. We

determine the delay between the submission time of a question and that of the accepted answer, and contrast

between reproducible and irreproducible issues using such delays. Fig. 4.11 shows the box plots for the

delay of getting the accepted answers. We see that the median delay of getting an accepted answer is about 5

minutes when the issue reported at the question is reproducible. On the contrary, such delay is almost double

when the reported issue is not reproducible with the submitted code. We also find a significant difference in

time delay for getting the accepted answer between reproducible and irreproducible status. We use Mann-

Whitney-Wilcoxon test, a non-parametric statistical significance test and get statistically significant p-value

(p-value = .04 < .05). We also examine the effect size using Cliff’s delta test and find large effect size,

i.e., Cliff’s |d| = 0.9365857 (large) with 95 percent confidence. Given all these evidences above, the delay

of getting an acceptable answer is significantly higher for the questions with irreproducible issues. Thus,
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reproducibility of the reported issues is an important quality paradigm for SO questions, and such attribute

could help them get the accepted answers quickly, even within 5 minutes.
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Figure 4.12: Accepted answer fraction vs. the time delay between question and accepted answer
submission

Table 4.5
Reproducibility Status vs. Time Delay between Question and Accepted Answer Submission

t < 10 t ≥ 10 Total

Reproducible 130 (64.68%) 71 (35.32%) 201

Ireproducible 7 (38.89%) 11 (61.11%) 18

Total 137 82 219

Although the above box plots demonstrate the benefits of issue reproducibility, we further classify the

delay of getting accepted answers into three intervals: 0 ≤ t < 10, 10 ≤ t < 20, t ≥ 20. Fig. 4.12 shows the

percentage of the accepted answers for reproducible and irreproducible issues against these intervals. We see

that questions with reproducible issues receive about 65% of their accepted answers within only 10 minutes.

Such percentage is only 39% for the questions with irreproducible issues. It also should be noted that 44% of

these questions require more than 20 minutes on average to receive the accepted answers. Table 4.5 provides

the raw statistics on the accepted answers and time interval. We examine the relation between these two

categorical variables using statistical test namely Chi-Squared test. Thus, given all the evidences in above

the tables and plots, issue reproducibility status is very likely to influence the time delay for getting the

acceptable answers at SO.

RQ3(c): Does reproducibility of issues discussed at SO questions encourage more answers?

According to RQ3a and RQ3b, the reproducibility of reported issues at SO question might encourage quick

and high quality responses from the users. In this section, we further investigate whether such reproducibility

also encourages more answers at SO. Fig. 4.13 shows the box plots for the answer count of our selected

questions against their issue reproducibility status. We clearly see that questions with issue reproducibility

receive more answers on average than the counterpart. We also find a significant difference in the number of
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Figure 4.13: Number of answers for the questions with reproducible and irreproducible issues

answers between two types of questions. Mann-Whitney-Wilcoxon test shows p− value = 0 whereas Cliff’s

|d| = 0.57 (large) with 95% confidence. Given these statistical findings, we suggest that the reproducibility

status of a reported issue at SO question has a significant impact on its chance of getting more answers.

4.5 Key Findings & Guidelines

While submitting a question at SO, it is recommended to add a bit of code fragment so that the reported

program issues can be reproduced easily [110]. Experts users of SO also suggest to add complete and

standalone code in the question [105]. However, our study delves further into the submitted code, and

delivers more in-depth insights on the question issue reproducibility using such code.

(a) Redundancy Hurts: Only those statements should be added that are required to reproduce the

reported issue and the redundant code should be avoided. Long and redundant code waste the developers

time unnecessarily which might also hurt the question’s chance of getting an accepted answer.

(b) Dependency Matters: Adding the import statements targeting the external libraries is very im-

portant. This is one of the major difficulties that we faced during the reproduction of question issues with

the submitted code. The question texts also should point to the external libraries (if used) so that the users

can include them in the IDE during issue reproduction.

(c) Executable Code for Debugging: The submitted code segment should compile and run if the

reported issue at SO question requires debugging to reproduce. This is especially required when the program

shows stochastic or unexpected behavior. Without a reproducible code segment, such questions are generally

hard to answer effectively.

(d) Discuss One Issue Per Question: Multiple issues should not be discussed using a single code

segment. Separate questions and code snippets are encouraged for separate programming issues for effective

question answering.
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4.6 Threats to Validity

Threats to external validity relate to the generalizablity of a technique. We manually analyse a limited

number of questions and as such our results may not generalise to all the questions. However, we investigate

a wide variety of questions of different types of issues in order to combat potential bias in our results.

Nonetheless, replication of our study using additional questions and different languages may prove fruitful.

Besides, we investigate only Java code segments. However, we believe that our insights can generalise to

other statically-typed, compiled programming languages such as C++ and C#. But we caution readers to

not over-generalise our results.

Threats to internal validity relate to experimental errors and biases [124]. The reproducibility status

(e.g., reproducible, irreproducible) of the reported issue is threatened by the subjectivity of our classifica-

tion approach. Thus, we cross-validate our results when an issue cannot be reproduced. We finalise the

reproducibility status as irreproducible if we both fail to reproduce the question issue.

Threats to construct validity relate to suitability of evaluation metrics. We use Mann-Whitney-Wilcoxon

test which is a widely used non-parametric test for evaluating the difference between two sample sets. How-

ever, the significance level might suffer due to the limited size of the samples. We thus consider the effect

size along with the p-value. To see the correlation between two categorical variables we use Chi-square test.

This statistical test of independence works well when there is a small number of categories (≤ 20) [72].

4.7 Related Work

There have been several studies on the reproducibility of software bugs [34, 76, 107, 137]. However, to the

best of our knowledge, ours is the first work that investigates the reproducibility of the reported issues at SO

questions using their submitted code.

Studies by Yang et al. [147] and Horton and Parnin [46] are the only closely related studies in terms of

research methodologies and problem aspects. Yang et al. analyze the usability of 914,974 Java code snippets

on SO and report that only 3.89% are parsable and 1.00% are compilable. They analyze the code segments

found in only the accepted answers of SO and employ automated tools such as Eclipse JDT and ASTParser for

the parsing and compiling the code. Then they report the errors that prevent the code segments from parsing

and compiling without human involvement. Similarly, we analyze the Java code snippets from the questions

of SO. However, unlike their approach, which is completely automated, our approach is a combination of

automatic and manual analysis. Not only we make the code parsable, compilable, and runnable using

appropriate modifications to the code, we also overcome the challenges to make them reproduce the reported

issues at SO.

Horton and Parnin investigate the executability of Python code found on GitHub Gist system. Their

primary focus was the execution of the Python snippets. However, we go beyond code execution and manually
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investigate the reproducibility of issues using Java code snippets submitted with SO questions. They also

report the types of execution failures encountered while running Python gists. Similarly, we categorize the

reproducibility status and identify the reasons why the issues could not be reproduced. Interestingly some

reasons are common between ours and their study such as import error, syntax error. However, executability

of a code does not always guarantee the reproducibility of an issue reported at SO question. Reproducibility

requires testing and debugging which warrant for manual analysis, and this was not done by any of the earlier

works. Besides, our research context differs from theirs since they examine gists shared on GitHub whereas

we deal with code snippets found in SO questions.

Due to the growing popularity and importance of SO Q&A site, there have been several studies that focus

on question/answer quality analysis. Duijn et al. [29] collect the Java code segments found in SO questions

and suggest that several code level constructs (e.g., code length, keywords) are correlated to the quality of a

code fragment. A number of studies investigate the quality of a code segment by measuring its readability

[16, 17, 26, 95, 103] and understandability [63, 104, 129]. Unfortunately, their capability of reproducing the

issues reported at SO questions was not investigated by any of the early studies. This makes our work novel.

As our empirical findings suggest, like readability and understandability, the reproducibility of issues could

be considered as one of the major quality aspects of SO questions.

Several other studies [18, 20, 110, 135] investigate how to get a fast answer, create a high quality post

or mine a successful answer. They suggest that information presentation, code-text ratio and question

posting time are the key factors behind getting the high quality answers. Similarly, our findings show that

reproducibility of an issue discussed in the question is likely to encourage high quality responses including

the acceptable answers. Rahman and Roy [97] investigate why questions at SO remain unresolved. However,

they also do not consider the issue reproducibility in their study.

4.8 Conclusion

In this study, we manually analyze 400 randomly selected questions from SO and investigate the reproducibil-

ity of their reported issues using their code segments. We answer three research questions in this work. We

classify status of reproducibility into two major categories - reproducible and irreproducible. We find that

68% of issues can be reproduced using the submitted code after performing minor or major modifications

to them. We also investigate and report why several issues could not be reproduced using the attached

code segments. We then examine the correlation between the reproducibility of issues (of questions) and

answer meta-data. Our findings suggest that reproducibility of question issues is likely to encourage more

high quality responses including the acceptable answers. Thus, reproducibility of issues can also be treated

as a novel metric of question quality for SO which was ignored by the earlier studies.
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5 Rollback Edit Reasons and Ambiguities in SO

Our previous two studies (Chapter 3 and Chapter 4) (1) investigate the questions and propose early

detection techniques of unanswered questions that outperforms the state-of-the-art techniques, and (2) expose

the challenges of reproducibility and suggest that irreproducibility of question issues prevent them getting

appropriate answers. Our second study also establishes issue reproducibility as a question quality paradigm.

SO permits users to improve the quality of questions and answers by editing. In this study, we focus on

the editing system of SO. In particular, we investigate why edits are rolled back and also the ambiguities of

rollback edits.

The rest of the chapter is organized as follows. Section 5.2 discusses the overall study setup that comprises

data collection, data preprocessing, data sampling and so on. Section 5.3 explores the rollback edits reasons,

and Section 5.3.2 compares the rollback edits with the approved edits. Section 5.4.1 describes the ambiguities

of rollback edits and the ambiguities detection algorithms are discussed in Section 5.4.2. Section 5.4.3 reports

the ambiguities over the entire SO rollback ambiguities. Section 5.5 discusses the implications of our study,

Section 5.6 discusses threats to validity. Section 5.7 focuses on the related works and finally Section 5.8

summarizes the chapter.

5.1 Introduction

The adoption, growth, and continued success of a crowd-sourced forum, such as SO depend on two major

factors, the participation of users and the quality of the shared knowledge [6, 56, 88]. Unlike traditional

knowledge sharing venues and stakeholders (e.g., paid events), the developers participating in crowd-sourced

forums are driven by the needs to learn from each other (which is often free), to become part of the community,

as well as to feel the need to be recognized by peers in the community. Thus, the roles of knowledge seekers

and providers in the crowd-sourced forums are often fluid and interchangeable. This elasticity leads to the

design of a semi-decentralized system. However, the lack of authoritativeness can raise the concerns of trust

on the quality of the shared contents [133]. The SO edit system is developed to give control to a content

owner, while encouraging other users to suggest ways to improve the content. This collaborative edit approach

is similar to other crowd-sourced platforms [25, 55, 58].

In SO, the edit system is introduced to promote quality by allowing users to communicate on the quality

of the shared knowledge (i.e., content) by editing the content (e.g., questions, answers). In particular,

collaborating editing helps to keep questions and answers clear, relevant, and up-to-date. For example, users
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often edit questions and answers to fix grammar and spelling mistakes, clarify the meaning, and add related

resources or hyperlinks. While any user can suggest an edit to shared content, SO adopts a semi-authoritative

approach by allowing the content owner or privileged users (e.g., reputation > 2K) to decide on the suggested

edit. A suggested edit can be either approved (if satisfactory) or rejected (otherwise). In SO, rejected edits

are called ‘Rollback’ edits.

The edits in SO were subject to a recent study by Wang et al. [134]. They identified 12 reasons why a

suggested edit was rejected, such as incorrect code change, undesired code/text formatting, and so on. We

find, though, reasons such as ‘undesired formatting’ could be prone to subjective bias. For example, consider

the two suggested edits shown in Figure 5.1. Both edits suggest to put the code terms into a code block

< code >< /code >. Both posts contained suggestions for Java API classes, System.IO.Compression

in the first and System.Object. However, the first suggested edit is approved, while the second one was

rejected. This observation leads to the question of how users are reviewing suggested edits and whether their

judgment is clouded by individual bias. Lack of rules coupled with individual subjective bias could create

ambiguity between the content owner (or privileged users) and the user who suggested the edit. Given that

SO edit system relies on the voluntary (i.e., unpaid) cooperation from the users, such ambiguity may create

confusion, frustrate the users, and dissuade the users from further contributing upon a rejection. It is thus

necessary to understand the specific ambiguities that may be present in the rollback edits and use that to

guide both forum designers and users.

We are not aware of any previous study that analyzed ambiguities in SO rollback edits. Clearly, such a

study is warranted given recent focus on the quality of contents shared in SO [2, 48, 75, 97, 145, 151], the

suite of tools and techniques developed to detect and recommend quality posts [20, 43, 59, 93, 94, 146], to

produce software documentation [111] and to collect and summarize developers’ reviews [130, 130, 131]. An

understanding of ambiguities in rollback edits, for example, can guide research in software engineering to also

analyze rollback edits for quality contents.

With a view to understand the ambiguities that may persist in the SO rollback edits, in this study, we first

conduct a qualitative study of 1,532 randomly selected edits from SO, where 769 edits (385 question + 384

answer) were approved and 763 (382 question + 381 answer) were rejected. We analyze this dataset in two

phases. In the first phase, we studied the reasons of rollback and approved edits. This phase produced a list

of 14 rollback edit reasons and four major common actions based on which rollback and approved edits differ.

Thus if any rollback edit showed suggestions similar to an approved edit, that could be due to an ambiguity

in the suggested content or the inability of the edit system itself to guide user properly. In the second phase,

we revisited the 763 rollback edits and exhaustively analyzed the edit history of each suggested prior edits to

the post related to the edits. This analysis produced a catalog of eight ambiguity types, i.e., many of those

edits were rejected due to one or more ambiguities. To understand the prevalence and evolution of those

ambiguity types, we then developed eight algorithms, one each to detect the eight ambiguities. We ran the

algorithms on the entire set of around 102K rollback edits we found in SO September 2019 data dump. In
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An Example Approved Edit (Suggested Edits: Put Code Terms inside Code Tag
https://stackoverflow.com/posts/1120/revisions?page=1

An Example Rollback Edit (Suggested Edits: Put Code Terms inside Code Tag
https://stackoverflow.com/posts/2142/revisions?page=1

Figure 5.1: Similar suggestions in approved and rollback edits

Figure 5.2, we show the distribution of ambiguities in the rollback edits. In 2018, around 45% of edits rejected

due to one or more ambiguity. This number was much smaller (only 34%) in 2009. Indeed, more and more

edits have been rejected due to ambiguity since 2008. We observe that presentation ambiguity is the most

prevalent which arises due to confusions among developers on how to present contents (e.g., code terms). We

also see that temporal ambiguities are rapidly increasing in SO, which arise when multiple already approved

edits to a post got rejected due to a newer suggested edits - which is then rejected, rendering the valuable

contributions of the approved edits useless. We offer recommendations on how the edit mechanism in SO

could be improved to promote better content quality.

5.2 Study Methodology

With a view to gain an understanding of the specific reasons contributing to rollback edits, we answer two

research questions:

RQ1. Why do edits get rejected in SO?

RQ2. How do rollback edits differ from approved edits?

Our exploration of the rollback and approved edits produces factors to distinguish rollback and approved edits,

and thus any rollback edits that deviated from those factors could have led to ambiguities. To understand

the diversity and prevalence of ambiguities in rollback edits, we answered our last three research questions.
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Figure 5.2: Distribution of rollback ambiguities over years

Figure 5.3: Schematic diagram of our conducted study.

RQ3. What are the ambiguities in the suggested edits that contribute to false/irrelevant edits?

RQ4. How can we automatically detect the ambiguities in SO rollback edits?

RQ5. How are the ambiguities distributed in the entire SO rollback edits?

Figure 5.3, we describe our overall methodology to answer the above five research questions. We describe

the steps below.

• Step 1. Data Collection We download September 2019 data dump of SO from the Stack Exchange site

[32]. The data dump contains all the essential information about questions and answers. It stores all the

events (e.g., edit body, rollback body, post deleted ) history of each question and answer. It also includes

the date of each event, the user who triggered the event. The data dump only stores the revised question or

the answer after each event. To detect the ambiguities programmatically, we require both the texts before

and after each revision of questions or answers. We thus save the web pages of the SO site and parse them

using HTML tags to extract the texts. In this study, we only investigate the revisions where users made

body edits to the questions or answers. Our data dump contains 26,325,033 such revisions. Here, 26,208,560

edits (13,468,700 questions + 12739860 answers) were approved and 116473 edits (72,159 questions + 44,314

answers) were rejected.
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• Step 2. Data Preprocessing There are 38 types of events that are tracked by SO [31]. In this study,

we only investigate the revisions that are either connected to Edit Body or Rollback Body events that are

performed on the body of a question or an answer (e.g., Fig. 5.3, Steps 2.a, 2.b). An Edit Body event

indicates that the body of a question or an answer has changed. A Rollback Body event indicates that a

question or an answer’s body has been reverted to a previous version [134]. As we analyze the revisions

(approved and rejected) of questions and answers individually, we separate the revisions according to their

post type id (question =1 and answer =2) (e.g., Fig. 5.3, Steps 2.c, 2.d, 2.e).

All the revisions of a question or an answer along with the other related information (e.g., revision number,

user, time, rollback to which revision) are found in an HTML table under the tag <div id=”revisions”>.

To find our target data (e.g., revision texts, revision number, rollback to which revision), we first match the

revision GUID with the ids of the HTML table rows. Each revision has a unique GUID that we get from

the data dump. Then we parse the appropriate HTML tags to get our target data. For example, we extract

both the revision texts before and after rollback using the HTML tag div class= post-text under the tag div

class=sidebyside-diff. We discard the records if any important data fields (e.g., revision number, user name)

are missing or noisy. Finally, we get 63,078 (among 72,159) and 39,218 (among 44,314) revisions of questions

and answers that were rejected respectively and are clean and complete. We analyze them programmatically.

• Step 3. Random Sampling of Data for Qualitative Analysis. To achieve a confidence level of 95%

with a confidence interval of 5% [12], we randomly sampled (1) 385 approved question revisions from the

entire approved question revision data set (e.g., 13,468,700 revisions), (2) 384 approved answer revisions from

the entire approved answer revision data set (e.g., 12,739,860 revisions), (3) 382 rejected question revisions

from 72,159 revisions, and (4) 381 rejected answer revisions from 44,314 revisions (e.g., Fig. 5.3, Step 3.a).

To compute the size of our random sample, we use the formula as follows.

S =
Nz2p(1− p)

e2N + z2p(1− p)
(5.1)

where N is the population size (e.g., 13,468,700), z is the Z-score corresponding to a particular confidence

level (e.g., 1.96 for a confidence level of 95%), e is the confidence interval (e.g., 5%), and p is population

proportion (e.g., 0.5) [134].

• Step 4. Identify Rejected Reasons. The first two authors used open card sorting approach to label the

reasons for each of 763 rollback edits [49]. In card sorting, the coders prepare cards (each denoting a label) for

a given entity (i.e., an edit in our case) and discuss among themselves to decide on the most appropriate card

for the entity by exhaustively analyzing the information related to the entity [49]. Axial coding is applied

on the assigned labels to identify major categories. This step produced a list rollback edit reasons, which we

report under RQ1.

• Step 5. Distinguish Rollback Edits from Approved Edits. We compare the rejected edits with

approved edits to understand the common major editing actions in both of the edits. These observations

offer us specific actions that are common in rollback and approved edits. We report the findings of this step
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under RQ2.

• Step 6. Identify Rollback Ambiguities. With a deep understanding of rejected and approved edits,

we revisit our dataset of rollback edits to understand whether any of those edits show specific commonality

with approved edits or are recorded due to the inability of the platform to handle those edits. To determine

the presence of ambiguities for a given rollback edit, we take into the following information: (1) The history

of all suggested edits of the post prior to the rollback edit, and (2) Our list of common actions for both

approved and rejected edit. Any rollback edit that did not follow the common actions, i.e., resembled an

approved edit instead, were included into a bin of ambiguous edits. We then manually assigned a category to

the ambiguity the rollback edit exhibited. We repeated the labeling process to form higher categories. The

final list of ambiguity categories are reported under RQ3.

• Step 7. Detect Ambiguities Automatically. While our catalog of rollback ambiguity types offer

insights based on 763 rollback edits, the total number of rollback edits in our SO data dump was around

102K. To analyze the prevalence of the ambiguities in all the rollback edits, we developed eight algorithms

based on heuristics that we learned during our qualitative study (i.e., indicators of those ambiguities). We

evaluate the algorithms and report their performance under RQ4.

• Step 8. Study the Distribution of Ambiguities. We apply our eight algorithms on the entire SO

rollback edits. We compute the distribution of ambiguities in the edits and analyze their distribution over

time. We report the findings under RQ5.

5.3 Exploring Rollback Edit Reasons

To properly analyze the potential ambiguities in rollback edits, we first need to learn the reasons contributing

to edit rejections and approval in SO. We conducted a qualitative study of 763 rollback and 769 approved

edits. In this section, we present the rollback edit reasons and then offer a qualitative comparison of major

differences between rollback and approved edit reasons.

5.3.1 Rollback Edit Reasons (RQ1)

In Figure 5.4, we show the distribution of the rollback edit reasons in our manual analysis. We found all

12 rollback edit reasons previously observed by Wang et al. [134]. In addition, we found two new rollback

edit reasons (Status Update, Gratitude add/remove). An edit can be rejected for multiple reasons, such as

undesired text change and incorrect code change. In our dataset, about 41% answer edits were rolled back

due to more than one reasons. Such percentage is about 27% for rollbacks of question edits.

(1) Undesired Text Formatting. Users often change the format of the texts unnecessarily. Such changes in-

clude changing the font, text cases, emphasizing text making them bold/italic, adding or removing space/new-

line, creating bullet/number list, and formatting text like code or vice versa. These kinds of undesired text

formatting are often rolled back.
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U
n
d
es

ir
ed

T
ex

t
F

o
rm

a
t

U
n
d
es

ir
ed

T
ex

t
A

d
d
it

io
n
/
R

em
ov

a
l

In
co

rr
ec

t
T

ex
t

C
h
a
n
g
e

U
n
d
es

ir
ed

T
ex

t
C

h
a
n
g
e

U
n
d
es

ir
ed

C
o
d
e

F
o
rm

a
t

U
n
d
es

ir
ed

C
o
d
e

A
d
d
it

io
n
/
R

em
ov

a
l

U
n
d
es

ir
ed

C
o
d
e

C
h
a
n
g
e

In
co

rr
ec

t
C

o
d
e

C
h
a
n
g
e

S
ta

tu
s

U
p

d
a
te

E
m

o
ti

o
n

A
d
d
it

io
n
/
R

em
ov

a
l

G
ra

ti
tu

d
e

A
d
d
it

io
n
/
R

em
ov

a
l

P
a
rt

ia
l

A
cc

ep
ta

n
ce

S
ig

n
a
tu

re
A

d
d
it

io
n
/
R

em
ov

a
l

R
ef

er
en

ce
M

o
d
ifi

ca
ti

o
n

O
th

er
s

0%

10%

20%

30%

40%

50%

1
8
%

3
4
.2

%

7
.8

%

8
.6

% 1
2
.4

%

1
8
.5

%

5
.3

% 1
2
.2

%

6
.3

%

1
%

0
.3

%

0
.3

%

1
.5

%

1
7
.5

%

3
.3

%P
er

ce
n
ta

ge

(b) Answer Rollback Reasons

Figure 5.4: Summary of rollback reasons for questions and answers of our manually analyzed dataset.

(2) Undesired Text Addition/Removal. Users add texts that have less or no impact on the quality of

questions or answers. That is, the additional texts do no contribute to improving the quality of questions or

answers. For example, a user was added texts in support of a code segment as follows, This code segment

alone prints the Alphabet, no other action is needed as far as I am aware[116]. However, such a decorative

text is optional, thus the text is removed by a rollback. On the contrary, sometimes users remove important

texts. Consider the following texts that carry essential messages on system configuration and operation.

Make sure php_curl.dll is in the directory listed under “extension dir” in php.ini. If it is already, try

restarting IIS (Apache always needs a restart from me when making php.ini changes) [113]. The texts were

removed and then were brought back by a rollback.

(3) Undesired Text Change. Besides adding or removing texts, users sometimes make undesired changes

in the existing texts. These changes include modification of the sentence structures (e.g., simple, complex),

tenses (e.g., present, past), voices (e.g., active, passive). Rewording, interchanging contractions by root

words, acronyms/abbreviations by elaborations and vice versa are also frequently seen text changes.

(4) Incorrect Text Change. Quality improvement is the primary goal of edits. Unfortunately, sometimes

users make incorrect texts edits such as that might distort the meaning of the texts. Such edits include words

with spelling mistakes, sentences with incorrect grammar, wrong wording and so on. For example [115], the

sentence “How do I get Mantissa and Exponent from double in jsp/java?” has been changed to “How do I get

integer and fraction from double in jsp/java?”. However, mantissa and exponent imply something different
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from integer and fraction. Incorrect changes also include grammatical and spelling mistakes, incorrect changes

of software versions or specifications, and incorrect changes of important terminologies. One user edits F6

by F5 [114], but the underlying task performed by pressing F6 is different from pressing F5. Thus, this

incorrect edit rejected by a rollback.

(5) Undesired Code Formatting. Users make unwanted changes in code format, such as: (1) modification

of code indentation, e.g., adding or removing spaces and newlines, (2) addition or removal of line numbers, (3)

splitting or merging code segments. In addition to these, undesired formatting of code also includes changes

in text cases. For example, one user was changed “select” to “SELECT” in a SQL query. However, the SQL

query is case insensitive.

(6) Undesired Code Addition/Removal. In some cases, users add new code segments intending to clarify

the discussed problem or to suggest an alternative solution for answers. They also add statements within

existing code segments. When such codes neither enhance the quality of questions nor answers, they are

rejected by rollbacks. On the contrary, users sometimes remove essential code statements that might make

the code segments obsolete or change their functionalities. Removal of code segments from the questions

might hurt the problem explanation.

(7) Undesired Code Change. Besides adding or removing codes, users also make undesired code changes.

Such changes include refactoring (e.g., variable renaming), changing APIs, and editing comments. For ex-

ample, a user substituted the statement – int main(int argc, char* argv[]) by the statement –

int main(int argc, char *argv[]) [121]. Both of them are syntactically correct. Thus, such an

unnecessary edit was rejected by a rollback.

(8) Incorrect Code Change. Sometimes users incorrectly change code. Such changes include changing

types of variables, function return types, function arguments, arithmetic expressions. For example, a user

substitutes a functions int return type by void. However, the function returns an integer value. Such an

incorrect change was rejected by a rollback.

(9) Status Update. Users often update their status to clarify users confusion, attach important messages

they missed to add during questions or answers submitting time, link external resources, and acknowledge

users response. Consider the following status update where a user linked a resource of a Python client with

their supported python versions. Update: If you only need SOAP client, there is well maintained library called

zeep (https://python-zeep.readthedocs.io/en/latest). It supports both Python 2 and 3 [120]. Unfortunately,

the above status was removed and thus it was brought back by a rollback. In some cases, unessential messages

are attached to questions or answers by status updates. For example, the following status includes personal

inquiry that might not become a part of a question. Update: Could the people who are down-voting this

question please post a comment or answer explaining what’s so bad about it? If it’s blindingly obvious, answer

it and I’ll vote you up [119]. Thus, the status update was rejected by a rollback.

(10) Emotional Sentence Addition/Removal. Users add emotional words/sentences that are often

rejected by rollbacks. In some cases, they are brought back by rollbacks.
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(11) Gratitude Addition/Removal. Sometimes users like to express their gratitude and appreciation at

the end of their questions or answers. According to our analysis, such thanksgiving words (e.g., thank you)

are often rejected by rollbacks. Conversely, they are occasionally brought back by rollbacks.

(12) Undesired Reference Modification. Users add references such as hyperlinks, images or diagrams

with their questions or answers. According to our investigation, the hyperlinks might inactive or points the

wrong resources. The attached images might not an appropriate selection to clarify explanations. Thus, the

references are removed by rollbacks. On the contrary, sometimes users either remove essential references or

unreasonably modify them. Therefore, the edits are rejected by rollbacks.

(13) Signature Addition/Removal. Users add or remove signatures that include their name, ID, links of

personal sites. In some cases, users only add their signatures at the bottom of questions or answers. That is,

they do not make any noticeable changes in the body of the questions or answers except adding their names

or personal links. We might consider such signatures as spam.

(14) Partial Acceptance. Partial acceptance refers to such a scenario when a revision is rolled back, but

part of the changes are still accepted. Then, the accepted changes are included in later revisions.

(15) Other. Some other rejection reasons we observed were as follows.

(1) Add or remove duplication/deprecation notes. (2) Interchange the position of texts. (3) Introduce

spam, i.e., users deface the post to promote product or service, insert garbage texts. (4) Ask questions in

the answer. (5) Add solutions inside question.

5.3.2 Rollback Vs Approved Edits (RQ2)

Ambiguities may arise due to a lack of clarity while reviewing a suggested edit. With a view to establish a

clear guideline based on empirical observations, we qualitatively study major differences between approved

and rollback edit reasons. We use this guideline to analyze the sources of ambiguities in the rollback edits in

Section 5.4. Our study shows four major actions for which approved and rollback edit contents differed from

each other. Figure 5.5 shows the distribution of the actions between the rollback and approved edits in our

study dataset. We summarize the actions below.

The most observed common action was ‘Text Modification’ in both edits (72% in rollback and 64% in

approved). The modified texts in approved edits contained suggestions that are correct, offered concrete

improvement over original text. In contrast, in rollback edits, such suggestions were mostly incorrect, and

offered negligible or no improvement over the original text. The decision of how much of the suggested edits

are significant for approval, relies on the content owner or privileged users. For example, the following edit

was rejected due to undesired text modifications.

How to make class iterable? Build a Basic Python Iterator

How would one create an iterableiterative function or class(or iterator object) in Pythonpython?

Actions related to ‘Code modification’ were found in 33% rollback and 18% approved edits. Similar to

the ‘Text modification’, the approved edits contained correct code, desired code format, and useful code
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Figure 5.5: Comparison between rollback and approved edits.

addition/removal. The following code segment was included in a question where the named keys of the array

$item[] were placed without quotes. The suggested edit was to place the keys (e.g., A,B) inside quotes.

This was considered as a useful suggestion.

$items[A]$items[’A’] = ”Test”;

$items[B]$items[’B’] = ”Test”;

$items[C]$items[’C’] = ”Test”;

$items[D]$items[’D’] = ”Test”;

Actions related to ‘Reference Modification’ were covered more in approved than the rollback edits (18%

vs 11%). In approved edits, such modifications could be mainly to correct an incorrect/inactive/obsolete link

in the original content. In rollback edits, the suggested reference could be incorrect or were considered as

useless. Consider the following example where reference of SharpWired was added. Unfortunately, the site

could not be reached by the link. Such an inactive link was updated by edit and thus approved.

In our project, SharpWired<http//sharpwired.sourceforge.net> SharpWired<https://sharpwired.wordpress.com>,

we’re trying to create a download component similar to the download windows in Firefox or Safari.

About 10% of the status updates were rejected by rollbacks. On the contrary, about 15% were accepted.

Approved edits related to ‘Status Update’ contained clarification messages in response to users’ inquiry,

informing others of achieving a self-solution, and acknowledging the positive contribution of others. In

contrast, rollback edits with status update contained irrelevant inquiry, the addition of redundant information,

removal of important status, messages in favor of the originality of questions.

Searching for Clarity Between Rollback and Approved Edit Reasons. As we noted above, the

approval or rejection of a suggested edit can become subjective, such as when the content owner has to

depend on his judgment to determine whether the suggestion is desired, significant enough, and useful. Given

the diversity of programming languages, and the often opinionated and passionate nature of discussions that
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Figure 5.6: Summary of rollback edit ambiguities.

may be observed in software engineering forums [131], it is a non-trivial task for the SO forum designers or

the user community in general to establish standard set of guidelines around the suggested edits. This lack of

a commonly agreed guidelines can then create confusions among users while reviewing the edits. Therefore,

ambiguities in the rollback edits may arise both from the observations of the same phenomenon (e.g., similar

text edits) in both approved and rollback edits, as well as the inability of the SO platform to properly handle

those reviews/rollback edits.

5.4 Rollback Edit Ambiguity

Our qualitative study in Section 5.3 hinted towards the presence of potential ambiguities in the SO rollback

edits. With a view to understand the types of potential ambiguities, we first conduct a qualitative study of

the rollback edits in our study dataset. Based on open coding of the differences between edited versions of

a content before a rollback, we observed eight different types of ambiguities. We describe the ambiguities

with examples in Section 5.4.1. Based on the insights gained, we then develop eight algorithms to detect the

ambiguities automatically. We describe the algorithms in Section 5.4.2. We then apply the algorithms in

entire list of around 102K rollback edits in SO. In Section 5.4.3, we discuss the prevalence, distribution, and

evolution of the ambiguities across all SO rollback edits.

5.4.1 Rollback Ambiguity Types (RQ3)

In our qualitative study dataset of 763 rollback edits, we find that about 51% of rollback edits of questions

have one or multiple ambiguities (about 31.1% in the answers). Figure 5.6 summarizes the ambiguities.

A single rollback edit could exhibit multiple ambiguities: Among question rollback edits, 38.7% have single

ambiguity and 12.3% have more than one ambiguity. For answers, the percentage is 26.6% for single ambiguity
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and 4.6% for multiple ambiguities. We explain the rollback ambiguities below.

(1) Presentation Ambiguity. Presentation ambiguity refers to the different presentation style of similar

text or code elements in SO. For example, one user placed myJSONObject inside code tags. On the contrary,

another user rejected such an edit and format myJSONObject as plain text. In some cases, users replace

acronyms by its root words, then bring the acronyms back rejecting such edits. According to our manual

analysis, we also see ambiguity for adding links. Sometimes links are added as regular texts, on the other

hand, some users prefer hypertext. Some users make names (e.g., Java) and key terms (e.g., jQuery) of

the questions or answers bold. However, users often reject such changes and then bring them back. We

also see such ambiguity for changing text cases. For example, one user rejected .NET and replaced it by

.net. Then such edit was rejected and brought .NET back. Even in a single revision, similar elements are

formatted differently. However, for processing convenience, we only consider the presentation ambiguities

of code elements. As shown in Figure 5.6, 12.6% rollback edits of questions have presentation ambiguity,

whereas the percentage is 10.1% for answer rollback edits.

(2) Structural Ambiguity. A rollback reverts a post to a previous version in the edit history. Structural

ambiguity refers to the rollbacks that revert a post to the immediate previous revision. Consider a rollback

to revision 3 from 4. Revision 4 might be a revised (i.e., edited) version of revision 3 because there are no

revisions to revert in between 3 and 4. Thus, such revisions might not be rollback revisions. In our manually

analyzed dataset, we find 11.5% structural ambiguity for rollback edits of questions and 6.8% for rollback

edits of answers.

(3) Temporal Ambiguity. Temporal ambiguity refers to such rollbacks when multiple approved edits are

rejected by a single rollback. For example, a user rollbacks a revision from 12 to 7 [118]. That is, the revisions

8 through 11 were not that much needed. Figure 5.6 shows that temporal contributes 8.6% of total question

rollback edits. Such percentage is 6.8% for answer rollbacks.

(4) Gratitudinal Ambiguity. Gratitudinal ambiguity refers to the dual viewpoint of accepting thanksgiving

words. For example, a user added thanks for your help at the end of the question description [117]. This

thankfulness was deleted by a rollback. Surprisingly, it was again brought back by a rollback. We see that

26.5% of total rollback edits have the gratitudinal ambiguity of question rollbacks, whereas such percentage

is only 0.8% for answer rollbacks (Figure 5.6).

(5) Signature Ambiguity. Sometimes users add their names and affiliations after editing questions or

answers. Such signatures often rejected by rollbacks. On the contrary, users sometimes bring such signatures

back. As shown in Figure 5.6, signature ambiguities are found 1.3% for questions and 2% for answers among

the total rollback edits in SO.

(6) Status Ambiguity. In the edit history, we see dual viewpoints accepting status updates by users.

According to our manual analysis, status updates are occasionally rejected by rollbacks. On the contrary,

rejected status updates are frequently seen to rollback by users. According to our manual analysis, status

ambiguity was seen 16% of total rollback edits of questions and 9.4% for rollback edits of answers (Figure 5.6).
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(7) Deprecation Ambiguity. This ambiguity discusses the ambivalent edits of deprecation notes. Addition

of deprecation notes within the body of answers is often rejected by rollbacks. In some cases, they are also

brought back by users. Deprecation ambiguity was seen infrequent in our dataset. Only 0.3% of total

rollback edits were seen to have deprecation ambiguity of the rollback edits of answers. We did not see any

such ambiguity in the rollback edits of questions.

(8) Duplication Ambiguity. This ambiguity discusses the ambivalent edits of duplication notes. Similar

to deprecation, the addition of duplication notes within the body of questions is often rejected by rollbacks.

In some cases, they are also brought back by some users. Although we did not see any duplication ambiguity

in the rollback edits of answers, about 3% of total rollback edits of questions have duplication ambiguity.

5.4.2 Ambiguity Detection (RQ4)

We present algorithms to detect the rollback ambiguities we discuss in RQ3. We then evaluate the perfor-

mance of the algorithms.

Algorithms. We developed eight algorithms, one each to detect the eight ambiguities.

(1) Presentation Ambiguity. SO users are suggested to add code elements (e.g., method name) inside the

texts using <code>..</code> tags. Code segments are suggested to add inside <code> under <pre> tag.

We see only the presentation ambiguity of code elements within the textual description, and thus remove the

content under <pre> tag from the body of a question or an answer. Then we extract both the texts – before

and after rollback using the <div> tag of class post-text (i.e., <div class = ”post-text”>). Next, we extract

all of the code elements from both the texts and store them separately. We then examine whether the same

elements are presented as code elements in one texts (e.g., before rollback) and non-code elements in another

texts (e.g., after rollback) or not. That is, rollback either rejects presenting some elements as code elements

(i.e., elements inside <code¿..</code> tag) or some code elements as non-code elements. We then count the

rollback edits as ambiguous with presentation ambiguity.

(2) Structural Ambiguity. The information related to SO revisions of questions or answers is usually

written in an HTML table. In particular, they can be extracted from a table row of class revision (e.g., <tr

class=”revision”>). We first find the current revision number and the previous revision number where a

rollback reverts in the edit history. Then we calculate the difference between the two revision numbers. We

mark a rollback with structural ambiguity when the difference is one.

(3) Temporal Ambiguity. To detect temporal ambiguity, we find the current revision number and the

previous revision number where a rollback reverts, and their difference, as discussed above. We consider a

rollback is ambiguous with temporal ambiguity when the difference is more than two.

(4) Gratitudinal Ambiguity. We extract both the textual description of before and after rollback. We then

look for several keywords related to gratitude such as – welcome, thanks, sorry, appreciated, thank, ty (i.e.,

thank you), thx, regards, and tia (i.e., thanks in advance) using regular expressions. When we find a keyword

match to any of the above textual descriptions (not both), we consider the rollback as ambiguous rollback
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Table 5.1: Performance of ambiguity detection algorithms

Ambiguity Precision Recall F1-Score Accuracy

Presentation 1 0.98 0.99 0.99

Structural 1 1 1 1

Temporal 1 1 1 1

Gratitudinal 1 1 1 1

Status 1 1 1 1

Duplication 1 0.94 0.97 0.99

Signature & Deprecation 0.33 1 0.5 0.99

Overall 0.99 0.99 0.99 0.99

with gratitudinal ambiguity. In particular, when rollbacks occur only to reject the gratitudinal phrases or

bring such phrases back, we mark such rollbacks as ambiguous with gratitudinal ambiguity.

(5) Signature Ambiguity. To detect signature ambiguity, we first extract user information. In particular,

we extract the names of two users: (1) rollback user, (2) user whose edit rejected by a rollback. We find these

names using the <div> tag of class user-details (e.g., div class=”user-details”). We then look for the names

(full or part) in the textual part of both the edits – before and after rollbacks using regular expressions.

When we find that any of the texts contain any of the two names, we consider such rollbacks as ambiguous

with signature ambiguity. That is, when edits are rolled back due to add or remove names (i.e., signature),

we mark the rollbacks have signature ambiguity.

(6) Status Ambiguity. Statuses are often updated followed by several keywords such as – edit, update,

note, and ps. We look for these keywords in both the textual description – before and after rollback using

regular expressions. When we find a match of any of the textual descriptions with a regular expression, we

consider them as ambiguous rollbacks with status ambiguity. In particular, when rollbacks occur only to

reject the statuses or bring them back, we mark such rollbacks as ambiguous with status ambiguity.

(7) Deprecation Ambiguity. To mark that an answer discusses deprecated technology (e.g., API), users

add a message followed by keywords such as – deprecation, deprecate. First, we look for these keywords in

both the textual description – before and after rollback using regular expressions. When we find a keyword

match to any of the textual descriptions, we mark the rollbacks as ambiguous with deprecation ambiguity.

(8) Duplication Ambiguity. Similar to deprecation , to mark that a question of SO duplicates another,

users add a duplicate message inside the body of the question followed by keywords such as – duplicate,

duplication. To detect deprecation ambiguity, we first look for the keywords in both the textual description

– before and after rollback using regular expressions. If we find a keyword match to any of the textual

descriptions, we mark the rollbacks as ambiguous with duplication ambiguity.

Detection Accuracy. The high performance of our proposed algorithms is necessary to reliably analyze the
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distribution of the ambiguities in the entire SO dataset. We evaluated the performance of our proposed

algorithms on an evaluation corpus. The corpus consists of 400 randomly sampled edits out of all the around

102K rollback edits in SO. The sample size is statistically significant with a 95% confidence level and 5

confidence interval. Out of the 400 edits, we pick 200 such edits where our algorithm did not find any

ambiguity and 200 where our algorithm found one or more ambiguities.

We manually label the sampled 400 rollback edits in a file as follows. 1. Got: the ambiguity detected by

the algorithm. 2. Expected: the actual ambiguity based on our manual analysis. We then create a confusion

matrix to analyze the performance of the algorithm as follows. 1. True Positive (TP) = ‘got’ ambiguity =

‘expected’ ambiguity 2. False Positive (FP) = (‘got’ ambiguity 6= ‘expected’ ambiguity) or (‘got’ ambiguity

but ‘expected’ no ambiguity) 3. True Negative (TN) = ‘got’ no ambiguity and ‘expected’ no ambiguity, and

4. False Negative (FN) = ‘got’ no ambiguity but ‘expected’ one or more ambiguity We use four standard

metrics such as – Precision P , Recall R, F1-score F1, and Accuracy A [70] to compute the performance of

each algorithm.

Table 5.1 shows the performance of our algorithms. Overall, our algorithms show high precision and recall

(0.99). The precision is 1 for each algorithm except Signature & Deprecation. For the signature ambiguities,

the misclassifications happened due to some users adding a different name (e.g., nickname) as a signature.

That is, the name they added is different from their SO account name. Thus when we attempt to match

the name with the body text of a question or answer, we did not find the name. However, when a rollback

edit contains more than one ambiguities (e.g., temporal, status and deprecation [122]), our algorithms can

successfully detect all of them.

5.4.3 Ambiguity Distributions (RQ5)

We applied our eight ambiguity detection algorithms on all of the 102,296 rollback edits in SO data dump

of September 2019. In Figure 5.7, we show the distribution of the ambiguities in the dataset over the years

between 2008 and 2019. SO was created in 2008. For each ambiguity, we show two distributions in Figure 5.7,

one for rollback edits in questions and another for answers. Each bar chart in Figure 5.7 is interpreted as

follows: The ‘Percent’ field informs that out of all the ambiguities detected in question and answer rollback

edits, the presentation ambiguity in question rollback edits was observed 12.4% times. The ‘Count’ for

Presentation ambiguity in Figure 5.7a tells that the the ambiguity was found 7791 times in rollback edits

across the years. The bars in Figure 5.7a denote that out of the 7791 times the rollback edit was found,

around 3% of those were in 2008 and around 15% in 2019.

Presentation Ambiguities arise when similar code formatting were observed both in rollback and

approved edits. Overall, the presentation ambiguities are much more in 2019 compared to the first year of

SO (i.e., 2008). The number of question submissions and their edits were increased in 2019 compare to 2008.

Interestingly, we see a decline in presentation ambiguity between 2009 and 2011, and then again in 2016. In

the years 2010 and 2015, we find that experts of SO published a few articles on how to submit questions and
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Figure 5.7: Distribution of Ambiguities in All Data
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how the format different components (e.g., code snippet). After 2011, the number of presentation ambiguities

started to rise again and it reached the maximum in 2014 (15.5%). We see increased adoption/discussion

around new programming languages or their versions around this time. Clearly, each programming language

has its own syntax.

The Structural Ambiguities (see Figure 5.7b, 5.7c) were observed mainly in the formation years of

SO (i.e., 2008, 2009), especially in the answers. After that they declined to almost zero. The ambiguities

occurred in the first place due to users reverting to a previous version (i.e., N-1) instead of the current version

(i.e., N) after rejecting an edit. Clearly, such ambiguities arose due to the unfamiliarity of the users with the

SO platform.

The Temporal Ambiguity relates to the rejection of multiple previously approved revisions by a new

rollback. We observe a sharp increase of temporal ambiguities in answer rollback edits in recent years (2018,

2019). A high percentage of temporal ambiguity suggests that users often perform less important or unwanted

edits. Such edits do not improve the quality of questions or answers, and thus they could be rolled back

together. As Wang et al. [134] observed, users performed more edits when they were closer to getting a

badge. Thus users in SO are suggesting less useful answer edits recently compared to before.

Rollbacks edits with rejecting gratitudinal phrases or bringing them back are marked as ambiguous with

Gratitudinal Ambiguity. Such ambiguities were seen frequent in question rollbacks but not much in

answers (see Figure 5.7g, 5.7h). It increased from 2008 to 2010, and then declined gradually. Both Signature

and Duplication ambiguities were observed infrequently and in very low frequency. Similarly, Deprecation

ambiguity was rarely seen. Status ambiguity was seen with about 14% for questions and 8% for answers

on average. For questions, status ambiguity was very high (24%) in the year 2008.

5.5 Implications of Findings

The findings from our study can guide the following major stakeholders in crowd-sourced platforms: (1)

Forum Designers to improve the edit system, (2) Forum Users to guide their edit behavior, and (3)

Researchers to study collaborative editing.

• Forum Designers. Given that content quality is paramount to the success of SO, it is necessary for

SO to enhance the edit system by addressing the shortcomings we found. Proper measures can reduce the

dominant ambiguities, such as presentation, status, and temporal ambiguities. The temporal ambiguity, in

particular, removes previously approved edits to a content, and thus can be detrimental to the overall quality

of the shared content as well as to the motivation of the affected users. Such ambiguities also generate more

suggested/rollback edits, while very little of those could be meaningful. From a site management perspective,

this inefficiency can cost both the performance as well as overall reputation of SO.

• Forum Users. Our catalog of edit rejection reasons can be used to teach forum users. Similarly, the

content owner or privileged users (i.e., the user who approves/rejects an edit) can learn from our rollback
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edit ambiguity catalogs and become more mindful before making a decision.

• Researchers. The content quality in SO has been the subject of a number of recent research papers [94,

151]. Studies traditionally look at the current version of a post to develop tools and techniques, such as

assessment of API misuse patterns [151], or producing live API documentation [111]. Given the edit history

of a post is also available and given that we see quality edits of a post can get rejected due to ambiguities,

we recommend that research in software engineering also analyzes the suggested edits as well to produce

potentially better and sound documentation and recommendations out of SO data.

5.6 Threats to Validity

• External Validity threats relate to the generalizability of our findings. In this study, we focus on SO,

which is one of the largest and most popular Q&A websites for developers. Our findings may not generalize

to other non-technical Q&A websites that do not focus on software development. To minimize the bias when

conducting our qualitative analysis, we took statistically representative samples of all relevant revisions with

a 95% confidence level and a 5% confidence interval [12].

• Internal Validity threats relate to experimenter bias and errors while conducting the analysis. Our study

involved qualitative analyses of revisions in RQ1 and RQ3. To reduce the bias, each revision was labeled

by two of the authors and discrepancies were discussed until a consensus was reached. We automatically

detect the ambiguities on a large data set. The automatic detection results are mostly similar to the results

of the manual investigation. This agreement also mitigates the bias of manual analysis. A few results varied

because the sampled data may not always properly represent the entire data set.

• Construct Validity threats relate to the difficulty in finding data relevant to identify rollback edits and

ambiguities. Hence, we use revisions of the body of questions and answers from the Stack Exchange data

dump, which we think are reasonable and reliable for capturing the reasons and ambiguities of revisions. We

also parse the web pages to create a large data set to apply our ambiguity detection algorithms. However,

we discard the incomplete and noisy records to keep our data set clean and reliable.

5.7 Related Work

Related work can broadly be divided into the two areas: (1) Collaborative editing, and (2)Improving Content

Quality in Q&A Sites.

5.7.1 Collaborative Editing in Q&A Sites

Collaborative editing systems are common in Wikipedia [55, 58], GitHub code editing [25], webcasts [78],

scientific contents [22, 66], and so on. Studies show that collaborating editing positively impacts towards the

improvement of shared contents [55, 58]. A recent study by Wang et al. [134] in SO found that users are
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motivated to edit more when they are closer to getting a badge. Indeed, offering incentives as reputation

scores is found to be useful to improve post quality [58]. Similar finding was also observed webcasts by

Munteanu et al. [78], who tested the effectiveness of engage users to collaborate in a wiki-like environment to

edit/correct transcripts that are produced from webcasts through an automated speech recognition system.

Kittur et al. [55] find that the increase in the number of editors does not guarantee the quality of the articles

in Wikipedia.

Our study offers complementary viewpoints to the above studies, in particular to Wang et al. [134].

While we find rollback edit reasons similar to them, we also observed new reasons. Unlike the above work,

we report with both qualitative and quantitative evidences, for the first time, on the diverse types of rollback

edit ambiguities. Similar study can be carried out to find ambiguities in other collaborative editing sites.

5.7.2 Improving Content Quality in Q&A Sites

The success of crowd-sourced forums depends both on user participation and shared content quality [2]. Quite

a few studies analyzed the quality of knowledge shared in crowd-sourced forums. The quality of question

is important to get an answer: Lack of clarity, relatedness, and reproducibility of the problem, as well as

the too short question could dissuade developers from answering to the question [5, 75]. The reputation

and past activity of an asker could also factor into the likelihood of a question getting resolved [97]. As

such factors of good questions are investigated, such as code to text ratio, etc. [20, 29]. However, depending

on the platforms and user characteristics these factors can vary [48]. As such, it is important to detect

content quality automatically and guide developers for a given platform. Ponzanelli et al. [93, 94] studied

characteristics of low quality posts in SO and developed classifiers to detect those automatically. In contrast,

high quality posts were automatically detected by Ya et al. [146] to assist in answering similar questions.

During their study of revisions in SO, Wang et al. [134] found that users who make more edits in a short

time, are likely to get more edits rejected. Thus while good edits can improve the content quality, bad edits

can harm the content quality. In fact, both monetary of reputation-based incentives can attract both low

and high quality responses [53, 134].

Our study findings emphasizes that the editing system, in particular, the rejection of edit process is

suffering from diverse critical reasons and ambiguities. Without proper handling of those reasons, ambiguities

will persist and may increase in the system. This could then harm the overall content quality.

5.8 Conclusions

• Summary. The edit system in SO encourages developers to improve the posted content. The owner of

a content or privileged users who have moderation privilege can approve or reject a suggested edit. With a

view to understand the reasons behind rejected edits, we qualitatively analyzed 1,532 edits in SO. We found

14 rollback reasons and eight types of ambiguities that are prevalent in the rejected edits. The ambiguities
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can confuse developers while edit suggestions. To determine the prevalence of the ambiguities, we developed

algorithms to automatically detect that ambiguities that showed high degree of precision (average 0.99). We

ran the algorithms on all rollback edits in SO. We found several ambiguities (e.g., presentation of contents)

are consistently present in the edits, while ambiguities such as temporal are rapidly rising (i.e., accidental

removal of already approved edits due to a more recent rejected edit).

• Implications. Our findings can guide 1. forum designers to properly develop edit system to promote and

ease the sharing of quality contents, 2. forum users to understand the contributing and ambiguous factors

towards rollback edits, and 3. researchers in software engineering to investigate tools and techniques to guide

forum users and designers to handle the rollback edits properly.
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6 Do Subjectivity and Objectivity Always Agree? A

Case Study with SO Questions

To assess the quality of questions and answers (a.k.a., posts), SO Q&A site relies on collaborative voting.

The quality of the questions and answers is subjectively evaluated by users through this voting mechanism.

While analyzing the questions and answers of SO (in the previous studies), we find several counter-intuitive

findings that cast serious doubts on the reliability of the evaluation mechanism employed at SO. In this study,

we thus focus on the assessment quality rather than focusing on content quality. To ensure a non-biased,

reliable quality assessment mechanism, we attempt to verify the subjective evaluation mechanism of a post

with the corresponding objective evaluation.

The rest of the chapter is organized as follows. In section 6.2 we discuss the methodology of our study.

In section 6.3 we discuss how we construct the datasets we use for our analysis. In section 6.4 we describe

the metric selection ground. In section 6.5 we perform an in-depth comparative study between promoted

and discouraged questions of SO with respect to the results of our selected metrics. In section 6.6 we present

our prediction models and the results we obtain from the models. We discuss the overall findings in section

6.7. In Section 6.8 we survey related work. In section 6.9 we discuss the threats to validity, and finally we

conclude the study in section 6.10.

6.1 Introduction

SO has emerged as one of the largest and the most popular Q&A sites for programming problems and

solutions. It has been a valuable knowledge base containing about 16.7 million questions and 26 millions

answers as of December 2018, which can be leveraged for various problem solving during software development

[127]. The quality of any question or answer in SO is subjectively evaluated by the users through a voting

mechanism. High-quality posts are generally voted up, whereas the vague, unclear or ambiguous posts

are likely to be voted down. The net votes (upvotes − downvotes) cast against a given post in SO forms

an evaluation metric called score, which also approximates the subjective quality of the post. However,

according to our investigation, 48% of the questions that received working solutions have a score below zero

[87]. That is, they receive more downvotes than upvotes. In other words, although these questions were valid

and were answered successfully, they might not be considered of high quality by others. About 18% of the

accepted answers (i.e., verified solutions) also fail to receive the maximum votes among all answers in a Q&A
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thread [87]. That is, the best answers might not have been chosen as the solutions. The users of SO are

also often disappointed by the evaluation against their questions (e.g., Fig. 1) and answers (e.g., Fig. 2).

All these findings above suggest the highly subjective nature of the votes cast by the users in SO. Honsel

et al. [45] also debunked several common myths (e.g., long answers get more downvotes) on the quality

assessment system of SO. These myths were not substantiated by the empirical evidence. Furthermore,

several previous studies also show that the incentive systems of Q&A sites may always not drive certain

users in a positive way. For example, opportunistic users may find loopholes, and aggressively game the

system for their advantage [47, 52, 134]. All these findings above cast serious doubts on the reliability

of the evaluation mechanism employed at SO. In order to ensure a fair, reliable and effective evaluation

mechanism, an investigation is warranted that verifies the subjective evaluation of a post (by the SO users)

with the corresponding objective evaluation. Objective evaluation involves numerical metrics that estimate

the quality by minimizing subjective bias. Such an agreement analysis between subjective and objective

evaluation might help us better understand the potential or peril of the voting systems employed in SO.

Several studies [18, 30, 79, 126] analyse questions and answers of SO and attempt to assess their quality.

Nasehi et al. [79] analyse the quality of code segments included in SO posts, and study the aspects that make

up a good code example. Treude and Robillard [126] investigate to what extent developers perceive such

code examples as self-explanatory. The appropriateness of code explanation is further studied by Ercan et al.

[30] using Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [36]. Calefato et al. [18] focus on

the four light weight, user-oriented features (e.g., user reputation) to predict the high-quality answers from

technical Q&A sites. Novielli et al. [80] argue that the emotional style of a technical question could be a

quality aspect that might influence the answering time of the question. Thus, the above studies simply rely

on the light weight, ad-hoc attributes to estimate a post’s quality. A few other studies [29, 93, 94] attempt to

separate up-voted questions from down-voted questions using both the subjective (e.g., user reputation) and

objective (e.g., text readability) metrics. While our work overlaps with them in terms of methodology, our

research goals are different. In particular, we attempt to verify whether the subjective evaluation makes sense

and the high-scored (hereby, promoted) questions on SO are actually preferable to the low-scored (hereby,

discouraged) ones in terms of different objective quality metrics.

In this article, we conduct a case study with 2.5 million questions of SO where we verify the subjective

quality of SO questions with objective evaluation. In particular, we check whether the quality of questions

perceived by users matches the objective quality estimate. We have several findings from this agreement

analysis. We found that four of the metrics totally agree, one metric somewhat agrees, and two metrics

totally disagree with the subjective evaluation of the quality of a post. We also develop classification and

prediction models based on the objective measures that outperforms the state-of-the-art classification models.

SO might incorporate a mechanism to estimate the objective quality of posts using our metrics. Then users

1https://stackoverflow.com/questions/47183288
2https://stackoverflow.com/questions/11765616
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Figure 6.1: An example of a question submitter complaining in a comment that the subjective
evaluation his question (hence, included the question1 and the discussions in the comments) is not
reasonable.

Figure 6.2: An example of a user complaining in a comment that the answer (hence, included the
question2, answer and the discussions in the comments) must not be voted down.

could asses the quality of the posts at SO and also their post quality during submission time. Alternatively,

a client-side browser plug-in can be developed employing our model. By installing the plug-in, users can

estimate the objective quality not only their existing posts but also their new posts. In this article, we

answer two research questions and thus make two contributions as follows:

(RQ1) Does crowd-based subjective assessment of the quality of SO questions agree with the

objective assessment of their quality? We conduct a comparative analysis between the promoted and

discouraged questions using ten objective metrics from the literature. Our analysis reports several findings.

First, topic entropy, metric entropy, text-code ratio, and text-code correlation support subjective evaluation.

That is, promoted questions are specific, less ambiguous, use unusual terms, and their code segments are

well explained with accompanying prose. Second, the reusability of the code segment and text readability

do not agree with their subjective evaluation. That is, the code examples included in promoted questions

are hard to reuse. They are less parsable than those of the discouraged examples. Code examples included

in discouraged questions are complete and more parsable. However, they often have redundant statements

that might cause additional time in code analysis. According to our investigation, promoted questions often

contain program elements (e.g., API classes) within the texts. The existing readability metrics consider such

elements as complex words that hurt readability. Third, code understandability could be either higher or

lower for the promoted questions based on the programming languages. Forth, title quality, code readability,
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Figure 6.3: Schematic diagram of our study.

and sentiment polarity are almost similar for both the promoted and discouraged questions.

(RQ2) Can we classify the promoted and discouraged questions of SO Q&A site? Can we

predict them while the users are posting the questions? We develop five machine learning models

to classify the promoted and discouraged questions. We analyse the features and rank them. Our analysis

reports that topic entropy, readability of text, metric entropy, and text-code ratio are the top four strong

predictors. Our models classify the questions with a maximum of about 76%−87% accuracy that outperforms

the accuracy of the state-of-the-art [93] from the literature. We further attempt to predict questions at the

time of the question submission. Our machine learning model also predicts questions with exactly the

same accuracy as the classification models. In particular, our model predicts the discouraged questions

automatically with a maximum of about 76% precision during their submission. Predicting a potentially

down-voted question in advance might greatly help one improve the question during its submission.

6.2 Study Methodology

Figure 6.3 shows the schematic diagram of our study. We first collect about 2.5 million questions from SO.

We collect questions from four popular programming languages with certain restrictions. Then we apply

the quality metrics to assess their quality from different aspects. We then analyse the agreement between

subjective and objective quality measures. Finally, we classify the promoted and discouraged questions

based on their objective quality using five machine learning models and evaluate the models’ performance.

We further attempt to predict the questions during their submission time using a machine learning model

and report the model’s performance.

82



Table 6.1
Summary of the Study Dataset

Topic Promoted Questions Discouraged Questions Total

C# 550,173 76,181 626,354

Java 585,410 116,268 701,678

Javascript 598,670 114,645 713,315

Python 418,700 67,035 485,735

Total 2,152,953 374,129 2,527,082

6.3 Data Collection

To verify the subjective assessment of SO questions with the objective evaluation, we collect a total number

of 2,527,082 questions from SO using StackExchange Data API [87]. In particular, we collect questions

related to four major programming languages: C#, Java, JavaScript and Python. We choose these questions

under certain restrictions - (a) each question must have at least one answer to ensure that the question has

attracted the attention of the community (b) the question has a score not equal to zero, which indicates that

it has obtained at least one up or down vote, and (c) questions are posted in SO in the year 2017 or earlier

which suggests that the questions have been assessed by SO users for a significant time period. Table 6.1

lists the dataset for our study. We categorise the questions into two sub-categories according to their score

(i.e., upvotes − downvotes). Each of them is classified as either a high-quality (hereafter, promoted) or a

low-quality (hereafter, discouraged) question as follows.

• Promoted questions: Questions with a score greater than 0 (i.e., questions with more upvotes).

• Discouraged questions: Questions with a score less than 0 (i.e., questions with more downvotes).

Several objective measures (e.g. reusability of code segment) can be applied to the questions that have

a code segment within their body. We thus consider such questions that have at least one line of true code.

According to our investigation, 1,909,539 out of 2,527,082 (i.e., 75.56%) questions have at least one line of

code. We identify such questions and extract code segments using specialised HTML tags such as <code>

under <pre>, and select them for our study. We also collect a total of 54, 463 tags from the Tags table using

StackExchange Data API [87]. We use this data in calculating topic entropy of a question.

6.4 Metric Selection

A question from SO consists of three components: title, body, and tags. The title summarizes the overall

problems, body describes the problem in detail, and tags indicate the relevant topics (e.g., java) of a ques-

tion. Questions that describe code related issues generally attach a code segment to support the problem
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Table 6.2
Summary of the objective metrics

Metric Sub-metric Question Parts

of Interest

Description

Title Quality
– Title Measures the integrity between the title and other

parts of a question.

Readability

Text Readability Body texts Estimates the quality of the written explanation

Code Readability Code segment Measures code structure and important local features

Explanation Quality

Text-code Ratio
Code segment +

Explanation

Measures the comprehensiveness of the code explana-

tion.

Text-code Correlation
Code segment +

Explanation

Measures the coherence between code segments and

their explanation.

Code Reusability Parsability
Code segment Measures the parsability of the attached code seg-

ment.

Code Understandability No. of API Used
Code segment Calculates the number of APIs used in the code seg-

ment.

Topic Entropy – Tags Estimates the ambiguity of the question topics.

Metric Entropy –
Body texts Estimates the randomness of the terms used in the

question texts.

Sentiment Polarity –
Title + Body

texts

Determines the positive, negative or neutral senti-

ment from question text.

statements. To investigate the agreement between subjectivity and objectivity, we thus attempt to assess all

of these components with appropriate metrics.

Table 6.2 shows the metric summary. First, we measure the quality of the title by estimating how

appropriately the title summarizes the overall problem. Second, we measure the readability of the text and

code to check how easy a question’s text or code is to understand. Third, we investigate how appropriately the

attached code segment is explained by the question submitter. Fourth, the reusability and understandability

of the code segments are assessed. Fifth, we calculate topic entropy to check whether a single question

touches too many topics or not. Questions containing multiple topics are imprecise or ambiguous, and thus

are difficult to answer. Sixth, we measure metric entropy to estimate the randomness of the terms used in

the body texts. Finally, we measure the sentiment polarity of the question texts to see whether the emotional

style of a technical question does influence its quality or not.

6.5 Answering RQ1: A comparative study between promoted and

discouraged questions using objective metrics

To answer RQ1, we analyze both promoted and discouraged questions from ten quality aspects as shown in

Table 6.2. In particular, we compare the objective quality metrics of promoted questions to that of discouraged

questions. Our goals are to determine (1) whether there exists any noticeable differences between these two
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set of metrics, as a result, (2) whether they either support or contradict the subjective assessment made by

SO users. Finally, we attempt to derive a conclusion from such findings for RQ1. Our comparative study is

divided into several different analyses as follows:

6.5.1 Title Quality (TQ)

The title is an important part of a SO question. Title should properly summarize the question. On the

contrary, the body texts explain the programming problem in detail with comprehensive information. If the

title is ambiguous or poorly written, the question might fail to draw the attention of the potential users who

could have answered the question. We thus measure the title quality using a popular metric namely ROUGE.

ROUGE automatically determines the quality of a summary by comparing it with human written summaries.

The measure counts the number of overlapping units such as n-gram, word sequences, and word pairs between

an auto-generated summary and the ideal summaries created by humans. ROUGE also has a high correlation

with human scores [30]. Here, we use ROUGE 2.0 [36], the latest ROUGE tool for our analysis. There

are different types of ROUGE measures such as ROUGE-N: N-gram Co-Occurrence Statistics, ROUGE-L:

Longest Common Subsequence, ROUGE-W: Weighted Longest Common Subsequence, and ROUGE-S: Skip-

Bigram Co-Occurrence Statistics, ROUGE-SU: Skip-Bigram with the addition of unigram as counting unit.

After a careful analysis, we find that only ROUGE-1 (unigram) works reasonably well in our problem context.

We consider title of a question as a reference summary (i.e., human generated summary). ROUGE takes

the body texts that contain more detailed information about the problem and produces a summary. Such

an automatically produced summary is called system summary. Then we calculate recall to determine the

quality of title. In particular, we calculate the ratio between the number of overlapping words and total

number of words in the reference summary (i.e., question title) as follows.

Recall =
COUNT(Reference Summary ∩ System Summary)

COUNT(Words in Reference Summary)
(6.1)

Does the title quality agree with subjective evaluation? As shown in Figure 6.4, we do not

find any significant differences in the title quality between promoted and discouraged questions. First, we

attempt to determine the title quality of both the promoted and discouraged questions. We find that Java

titles of promoted questions have slightly higher recall than those of discouraged questions. The other three

languages have nearly the same precision for both the question categories. Then we combine the samples of

all the languages and also did not notice any significant differences. Finally, we undersampled the promoted

questions to balance the dataset and find similar results.

Summary of Title Quality: There is no significant difference in the title quality between promoted

and discouraged questions. Both the titles summarize the problem statements fairly well with 60%+

ROUGE scores. Thus, title quality might not be a strong metric for verifying the subjective assessment

of the questions from SO.
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(a) Title quality for each of the programming languages (pro-
moted vs discouraged)

(b) Title quality for all the program-
ming languages (promoted vs dis-
couraged)

Figure 6.4: Title quality

6.5.2 Readability

Readability is the ease with which a reader can understand a written text [138]. Question from SO generally

contain two types of items - regular texts and code segments. We thus attempt to capture the readability

of both texts and code using two separate metrics: Text Readability and Code Readability. We extract code

segments and texts (including title) by parsing the HTML contents of each question. In our dataset, about

25% of questions have textual description only, and the other 75% contain both the code segments and texts.

We apply the readability metrics to them as follows:

Text Readability (TR)

Readability of texts depends on the complexity of their vocabulary, syntax, and their presentation style

such as font size, line height, and line length [138]. We consider the textual description from the question

body to measure text readability. We compute the text readability separately for the questions having (1)

textual description only and (2) textual description and code segments. To assess the text readability, we

compute a popular readability index namely Readability Index (RIX) [4]. This readability index represents

the comprehension difficulty of passages written in English and are based on US grade levels. First, we

calculate the readability of each of the body texts of the questions. We then normalize the score between 0

and 100. A low score indicates the high readability whereas a high score indicates the poor readability of the

question texts.

Do the promoted questions have higher text readability than that of the discouraged ques-

tions? First, we select only 25% questions that do not have any code segments in their body. As shown in

Figure 6.5, we find a significant difference in text readability between promoted and discouraged questions,

where promoted questions have higher text readability scores than those of discouraged questions. That is,
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(a) C# questions with no code segment. (b) C# questions with code segment.

(c) Java questions with no code segment. (d) Java questions with code segment.

(e) Javascript questions with no code segment. (f) Javascript questions with code segment.

(g) Python questions with no code segment. (h) Python questions with code segment.

Figure 6.5: Text readability (TPS = Total Promoted Sample, RPS = Random Promoted Sample,
DS = Discouraged Sample, Q1 = First quartile, Q2 = Second quartile, Q3 = Third quartile and Q4
= Fourth quartile).
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promoted questions are less readable than that of the discouraged questions. In our dataset, the number of

promoted questions is higher than the discouraged questions. We thus undersampled the promoted questions

to balance the dataset. Then we compare the readability of discouraged samples with that of the promoted

samples. For all the programming languages, we get significant p-values from the Mann-Whitney-Wilcoxon

statistical test and small effect-size from Cliff’s delta test. For Java, we get p-value = 0 <.05 and Cliff’s d =

0.20 (small). We also get similar results for the other three languages - C#, JavaScript and Python. Next,

we divide the readability scores into four quartiles and compare them using box plots. We find statically

significant differences in text readability (i.e., p-values <.05) for all the quartiles between promoted and dis-

couraged questions. However, the effect-sizes differ from small to large. Second, we measure the readability

of the rest 75% questions that have both code segments and textual description. In this case, we also find a

significant difference in readability between promoted and discouraged questions.

We further investigate why the promoted questions have lower readability. We find that promoted ques-

tions often contain code segments or program elements (e.g., API classes) which are considered as complex

words. The existing readability metrics are not well designed for handling the code or program elements

within the texts.

Summary of Text Readability: There is a significant difference in text readability between promoted

and discouraged questions. Promoted questions have higher readability score than those of the dis-

couraged questions. That is, promoted questions are less readable than discouraged questions. Their

readability degrades because they often include code segments or program elements (e.g., API classes).

Code Readability (CR)

Code readability is a property that determines how easily a given code snippet can be read and understood

by the developers who did not author the code [95]. Code readability is strongly related to software main-

tainability and quality. Code understanding is one of the most frequent activities in software maintenance

that consumes over 70% of the total maintenance costs [11, 103]. Thus, the underlying idea is - the more

readable the code is, the easier it is to reuse and maintain in the long run. Since poor readability of code

costs development time and efforts, we analyse the readability of the code segments added to the questions.

In particular, we attempt to find whether there is any noticeable difference in the code readability between

promoted and discouraged questions.

To compute the code readability, we use the tool developed by Buse and Weimer [17]. Their readability

model is trained on human perception of readability or understandability. The model uses several textual

features from the code that are likely to affect the humans’ perception of readability, and predicts a readability

score on a scale from zero to one. Here, one indicates that the source code is highly readable. On the contrary,

zero indicates poor readability of the code under analysis.

As shown in Figure 6.6, readability of the code segments found in either promoted or discouraged questions
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Figure 6.6: Code readability

is very poor.

Do the code examples of promoted questions have a higher readability score than those

of discouraged samples? As mentioned above, the average code readability score is very low for the

code segments extracted from both promoted and discouraged questions. A significant fraction (34%) of the

code segments have a readability score of zero. Only about 14% of code segments have medium or above

readability score. Although the p-values from Mann-Whitney-Wilcoxon statistical test are significant (i.e.

p-values<.05), the d-values from Cliff’s Delta test show that the effect sizes are negligible (i.e., d <0.1 ) for

all four cases.

Summary of Code Readability: Readability of the code segments posted on SO questions is generally

poor. There is no significant difference in the readability of the code segments between promoted and

discouraged questions. Although the code readability score of discouraged questions is marginally

higher, the effect size is negligible.

We further manually investigate 200 code snippets (100 promoted + 100 discouraged) from all four

programming languages, and make the following observations.

• Most of the code segments are incomplete and they do not maintain proper structures, indentations

and naming conventions of identifiers.

• Question submitters often include multiple code segments in a question. When we merge the segments

into a single file, they become large and chaotic. Our adopted tool might not be well suited for such

synthesized code snippets.

• Many of the code segments are noisy. Programmers often include non-code elements (e.g., stack traces)

within the code segment. Such noise might have hurt their readability.
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Figure 6.7: Text-code ratio (AS=All Samples, RS=Random Sampled)

6.5.3 Quality of Explanation for the Code Segments

In SO questions, users often explain their code segments with an associated prose written in regular texts.

Ercan et al. [30] suggest that large and unexplained code segments make a question difficult to understand,

which might impact the time required to obtain an appropriate answer. An explanation that properly

explains the code might help the users to answer the question. Thus, quality of the code explanation might

be considered as a metric of question quality. We measure the explanation quality in two ways as follows.

Table 6.3
Summary of the Text-code Ratio (TCR)

Ratio
C# Java JavaScript Python

Promoted Discouraged Promoted Discouraged Promoted Discouraged Promoted Discouraged

Ratio <= 1 46 % 36 % 39 % 28 % 44 % 35 % 51 % 44 %

Ratio >1 54 % 64 % 61 % 72 % 56 % 65 % 49 % 56 %

Text-code Ratio (TCR)

The metric determines how extensively the code has been explained by the associated prose in a question. To

examine how comprehensive the code explanation is, we extract the code segments and texts from the body

of a question. Then we calculate their lengths in terms of number of ASCII characters they used. Finally,

we measure the text-code ratio as follows:

TCR = LENGTH(code)
LENGTH(texts)

Do promoted questions contain more explanation for their code than that of the discouraged

questions? We divide the text-code ratio (TCR) into two categories: (1) 0 < Ratio ≤ 1 and (2) Ratio > 1.

When the length of the texts is larger or equal to the code, these questions belong to the first category. The

second category includes the questions which have a greater code length than that of the texts. From Figure

6.7, we see that the promoted questions have more code explanations than the discouraged questions. Squire

and Funkhouser [110] suggest that high-quality questions have a more detailed explanation of code segments
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than that of low-quality questions. As shown in Table 6.3, all the promoted questions of category 1 have

a higher code explanation ratio than that of discouraged questions from the four programming languages.

For example, promoted questions of C#, Java, JavaScript, and Python have 10%, 11%, 9%, and 7% higher

text-code ratios respectively than that of discouraged questions.

We also determine whether the difference of text-code ratio between promoted and discouraged questions

is statistically significant. We use the Mann-Whitney-Wilcoxon statistical test and find significant p-value

(p-value = 0) with a small effect size.

Summary of Text-code Ratio: According to our investigation, promoted questions have a more detailed

explanation for their code than that of the discouraged questions. The ratio difference is statistically

significant with a small effect size.

Text-Code Correlation (TCC)

Table 6.4
Summary of Statistical Significance Tests of Text-code Correlation (TCC)

Dataset Test Name C# Java JavaScript Python All Languages

First Quartile
MWW test (p-value) 0 0 0 0 0

Cliff’s d (effect size) 0.41 (medium) 0.29 (small) 0.0.35 (medium) 0.21 (small) 0.32 (small)

Second Quartile
MWW test (p-value) 0 0 0 0 0

Cliff’s d (effect size) 0.93 (large) 0.65 (large) 0.69 (large) 0.07 (negligible) 0.61 (large)

Third Quartile
MWW test (p-value) 0 0 0 0 0

Cliff’s d (effect size) 0.85 (large) 0.55 (large) 0.59 (large) -0.08 (negligible) 0.45 (medium)

Fourth Quartile
MWW test (p-value) 0 0 0 0 0

Cliff’s d (effect size) 0.19 (small) 0.21 (small) 0.19 (small) -0.10 (negligible) 0.11 (negligible)

All Samples
MWW test (p-value) 0 0 0 0 0

Cliff’s d (effect size) 0.22 (small) 0.13 (negligible) 0.15 (small) 0.10 (negligible) 0.11 (negligible)

The previous section measures the comprehensiveness of the code explanation. In this section, we deter-

mine the appropriateness of the code explanation by measuring the correlation between code segments and

code explanation within a question. Ercan et al. [30] evaluate the quality of explanation of a code segment in

terms of human readability and suggest that a high textual overlap between code segments and code explana-

tion is strongly correlated to the quality of a question. We thus investigate the content overlapping between

code explanations and code segments using Recall-Oriented Understudy for Gisting Evaluation (ROUGE).

In particular, we use code segments as a reference summary and the automatically produced summary by

ROUGE from code explanations as a system summary. Then we calculate recall base on the ratio between

the number of overlapping words and total words in the reference summary. The resulting ROUGE scores

(i.e., recall) indicate how appropriately the code explanation (i.e., system summary) explain the target code

(i.e., reference summary).

Do the promoted questions have a higher correlation between their code segments and code
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(a) C# programming questions (b) Java programming questions

(c) Javascript programming questions (d) Python programming questions

(e) All programming languages (f) All programming laguages (After Ran-
dom Sampling)

Figure 6.8: Correlation measurement using ROUGE-2.0 (TPS = Total Promoted Sample, RPS =
Random Promoted Sample, DS = Discouraged Sample, Q1 = First quartile, Q2 = Second quartile,
Q3 = Third quartile and Q4 = Fourth quartile).
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Figure 6.9: Parsability rates of the programming languages (promoted VS discouraged questions).

explanations than those of the discouraged questions? According to our analysis, the correlation

between code segments and code explanations of promoted questions is stronger than that of the discouraged

questions. Figure 6.8 summarizes the results as box plots. We see that all the promoted questions have a

significantly higher correlation between explanation and code with small to large effect sizes.

We use Mann-Whitney-Wilcoxon statistical test and Cliff’s delta test to compute the statistical difference

and effect size respectively. The result of the statistical test is shown in Table 6.4. We see that the first,

second, and third quartile have a statistically significant difference with high effect size, whereas the fourth

quartile shows small or negligible effect size.

Summary of Text-code Correlation: Overall, the text-code correlation is higher for the promoted

questions than the discouraged questions. So, we can conclude that this objective evaluation agrees

with the subjective measure. For several reasons, Java programming language has the opposite result

among the four programming languages.

6.5.4 Code Reusability (CRUSE)

Usability of source code is determined based on parsability, compilability and executability of source code

[147]. In this research, we examine only parsability as a part of the reusability of code segments found in SO

questions. Our goal is to measure the parsability rates of the code segments of four programming languages

(C#, Java, JavaScript, and Python). We then contrast the parsability rate of promoted questions to the

discouraged questions. For parsing C# code segments, we use a tool called Roslyn by Microsoft. Roslyn

provides rich APIs (e.g., CSharpSyntaxTree.ParseText) for parsing the abstract syntax tree from the C#

code. To parse Java code segments, we used JavaParser3. Esprima4 was used to parse JavaScript code

examples. Python’s built-in AST module was used to parse the Python code segments.

3http://javaparser.org
4http://esprima.org
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Figure 6.10: Code understandability

Are code segments from promoted questions easier to parse than those of the discouraged

questions? As shown in Figure 6.9, the parsability rate is higher for the code examples from the discouraged

questions than that of the promoted questions. Such an observation is true for three out of four programming

languages - C#, Java and Python. We find that the overall parsability rate of code examples from promoted

questions is about 23% whereas such ratio is 25% for the code segments of discouraged questions. We further

attempt to find why code examples of the discouraged questions have higher parsing rates through manual

analysis. We make several observations that might explain such an inconsistency as follows.

• Redundant and long code: The users at SO often submit questions that contain unnecessarily long

code. Such questions often receive down-votes and fail to get appropriate answers even though their

code is parsable. According to our investigation, such code segments have more than 72 lines of code.

We believe that such long code places extra burden on the other users during question answering.

Thus, despite being parsable without modifications, such questions receive down-votes and considered

as discouraged ones.

• Novice user: Sometimes novice users add long code (e.g., an entire course assignment) without proper

analysis. They even do not discuss the encountered issues properly. According to our analysis, 50% of

users who added long and redundant code and receive down-votes have a reputation score below 20.

Summary of Reusability: Code examples of promoted questions have a little lower parsing rate than

those of the discouraged code examples.Thus, the rate of reusability (i.e., parsability) marginally

disagrees with subjective measures.

6.5.5 Code Understandability (CUA)

The code fragments on SO posts are often accompanied by natural language texts. We already measured the

quality of code explanation using such texts. We also estimate the readability of the code segments using an
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existing tool [17]. However, the perceived readability is something different from the actual understandability

of the code. A developer could find a piece of code readable, but still difficult to understand what the code

does [104]. Scalabrino et al. [104] report that code understandability often depends on the number of APIs

used in a program. The more APIs are used, the harder would be the code to comprehend. Thus, we count

the number of APIs in the code segments as a proxy of code understandability. We use regular expressions

to find the APIs used within the code segments.

Are code segments from promoted questions more understandable than those of discouraged

questions? According to our analysis, the difference in the number of APIs usage between promoted and

discouraged questions is not statistically significant as shown in Figure 6.10. We further investigate the

questions from each of the programming languages and find the followings:

C#. About 50% of the promoted questions use at least two API classes whereas 25% of them use at

least six API classes in their code. The discouraged questions have almost similar statistics with a maximum

count of 276 API classes. On the contrary, promoted questions might even contain a total of 314 API classes

in their code snippets.

Java. About 50% of the promoted questions use at least four API classes whereas 25% of them use at

least twelve API classes in their code. On the other hand, about 50% of the discouraged questions use at

least five API classes whereas 25% of them use at least fourteen API classes in their code. The discouraged

questions have a maximum count of 817 API classes. On the contrary, promoted questions might even contain

a total of 604 API classes in their code snippets.

JavaScript. About 50% of the promoted questions use at least three API classes whereas 25% of them

use at least seven API classes in their code. On the other hand, about 50% of the discouraged questions use

at least two API classes whereas 25% of them use at least six API classes in their code. The discouraged

questions have a maximum count of 616 API classes. On the contrary, promoted questions might even contain

a total of 586 API classes in their code snippets.

Python. About 50% of the promoted questions use at least two API classes whereas 25% of them use at

least six API classes in their code. On the other hand, about 50% of the discouraged questions use at least

one API classes whereas 25% of them use at least four API classes in their code. The discouraged questions

have a maximum count of 440 API classes. On the contrary, promoted questions might even contain a total

of 430 API classes in their code snippets.

Summary of Code Understandability: Dynamically typed languages such as JavaScript and Python

have more APIs in the code examples of their promoted questions than that of the discouraged

questions. On the other hand, statically typed language as Java has less APIs in the code examples

of their promoted questions. Thus, promoted code snippets from statically typed languages are more

readable than the discouraged code snippets. However, the opposite is found to be true for dynamically

typed languages.
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(a) C# programming questions (b) Java programming questions

(c) Javascript programming questions (d) Python programming questions

(e) All programming languages (f) All programming laguages (After Random
Sampling)

Figure 6.11: Summary of topic entropy (PS = Promoted Sample, TPS = Total Promoted Sample,
RPS = Random Promoted Sample, DS = Discouraged Sample, Q1 = First quartile, Q2 = Second
quartile, Q3 = Third quartile and Q4 = Fourth quartile).
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Table 6.5
Summary of Statistical Significance Tests of Topic Entropy (TE)

Dataset Statistical Significance Test C# Java JavaScript Python

First Quartile
MWW test (p-value) 0 0 0 0

Cliff’s d (effect size) -0.61 (large) -0.66 (large) -0.68 (large) -0.60 (large)

Second Quartile
MWW test (p-value) 0 0 0 0

Cliff’s d (effect size) -0.99 (large) -0.99 (large) -0.98 (large) -0.96 (large)

Third Quartile
MWW test (p-value) 0 0 0 0

Cliff’s d (effect size) -0.99 (large) -1.0 (large) -0.99 (large) -1.0 (large)

Fourth Quartile
MWW test (p-value) 0 0 0 0

Cliff’s d (effect size) -0.74 (large) -0.79 (large) -0.68 (large) -0.74 (large)

All Samples
MWW test (p-value) 0 0 0 0

Cliff’s d (effect size) -0.34 (medium) -0.36 (medium) -0.35 (medium) -0.33 (small)

6.5.6 Topic Entropy (TE)

Programming questions discussing on only common topics (e.g., java) are likely to be imprecise or ambiguous.

Precise topics could help the users locate the questions of their interest. We study the uncertainty or ambiguity

of question topics and attempt to determine if discouraged questions use more common topics than those of

promoted questions. In SO, tags capture the topics with which a question is associated [150]. Each question

can have at most five tags and must have at least one tag.

In information theory, entropy is considered as a measure of uncertainty of a random variable that takes

up different values [97]. To measure the topic entropy associated with each question, we first calculate the

probability of each topic (i.e., tag). Consider the topic probability of a particular topic i is Pi.

Pi =
Fi∑N
i=1 Fi

(6.2)

where Fi is the frequency count of the ith topic and N denotes the total number of topics. We then determine

topic entropy for each question as follows:

TE = − 1

n

[
n∑
k=1

Pk × log(Pk)

]
(6.3)

n denotes the total number of topics (i.e., tags) of a question. Here, we calculate the average entropy (dividing

the entropy by n) since the number of tags differs from question to question. Then we normalize them. If

a question of SO uses a set of fairly common topics, the entropy becomes higher. According to information

theory, a higher entropy value indicates high ambiguity or uncertainty of question topics and vice versa.

Do the promoted questions have less ambiguous topics? Figure 6.11 shows the box plots of topic

entropy. We see that topic entropy of promoted questions is lower than that of the discouraged questions

for each of the programming languages. In other words, promoted questions have precise topics whereas the

topics of the discouraged questions are ambiguous. We further test whether the differences of topic entropy
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(a) All programming languages (b) All programming laguages (After Random
Sampling)

Figure 6.12: Summary of metric entropy (PS = Promoted Sample, TPS = Total Promoted Sample,
RPS = Random Promoted Sample, DS = Discouraged Sample, Q1 = First quartile, Q2 = Second
quartile, Q3 = Third quartile and Q4 = Fourth quartile).

are statistically significant for each of the languages. Table 6.5 shows the test results. We use the Mann-

Whitney-Wilcoxon test and find significant p-values (i.e., p-value = 0 ) for all the test cases. Our quartile

analysis using Cliff’s delta test suggests that the differences are significant with a large effect size for all four

quartiles. The difference is also statistically significant with medium or small effect size when we take the

entire dataset.

Summary of Topic Entropy: Topic entropy of promoted questions is lower than that of discouraged

questions. Thus, topics of promoted questions are more precise than that of discouraged questions.

6.5.7 Metric Entropy (ME)

We use metric entropy to contrast between promoted and discouraged questions. Metric entropy is the

Shannon entropy [123] divided by the length of the text. It represents the randomness of the information

contained in a question text [93]. A higher metric entropy indicates that the questions have used the common

words frequently in its texts and vice versa.

Do the promoted questions have used more unusual terms? Figure 6.12 shows the box plots

of metric entropy. We see that promoted questions have lower metric entropy than that of the discourage

questions for all the programming languages. That is, promoted questions use more unusual terms (e.g.,

more technical terms) whereas the terms of the discouraged questions are common. We then use Mann-

Whitney-Wilcoxon test and find significant p-values (i.e., p = 0 <.05 ) for the entire dataset. However, the

effect-size is small. Our quartile analysis using Cliff’s delta test suggests that the differences are significant

with a medium or large effect size for all four quartiles.
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Summary of Metric Entropy: Metric entropy of promoted questions is lower than that of discouraged

questions. Thus, terms of promoted questions are more unusual than that of discouraged questions.

Table 6.6
Details of Sentiment Polarity

Language Question Category
Sentiment Polarity (in-percent)

Positive Negative Mixed Neutral

Java
Promoted 23.60 17.26 15.46 43.68

Discouraged 20.95 16.25 11.05 51.74

C#
Promoted 24.03 16.78 15.53 43.66

Discouraged 22.00 15.05 10.00 52.94

Javascript
Promoted 26.53 14.71 14.75 44.00

Discouraged 24.52 12.71 9.94 52.81

Python
Promoted 23.48 17.47 15.77 43.29

Discouraged 21.43 16.70 11.33 50.53

6.5.8 Sentiment Polarity (SP)

Software developers often interact with each other in various community-based Q&A sites (e.g., SO) and

development environments (e.g., Github). Calefato et al. [18] argued that social aspects such as emotional

status of a developer might have an impact on the response time in Q&A site. That is, sentiment expressed

in the question texts might determine its answering time of the question. We thus consider the sentiment

polarity of SO question texts as an objective quality aspect. We used SentiStrength-SE, a sentiment analysis

tool to measure the sentiment polarity. SentiStrength-SE is developed by Islam and Zibran [51] for the

software engineering domain.

Does sentiments expressed in SO question influence their subjective assessment? We measure

positive, negative, mixed and neutral sentiment polarity of the texts extracted from the title and body of

SO questions. Table 6.6 shows the summary of sentiment measures. We see that about half of the contents

from both promoted and discouraged questions are neither positive nor negative. We also see that promoted

questions have a higher percentage of positive sentiment and a lower percentage of neutral sentiment polarity

than those of discouraged questions. However, none of the differences is statistically significant.

Summary of Sentiment Polarity: Results show that sentiment polarity has less impact on the subjective

quality assessment of SO questions. About 50% of the questions have neither positive nor negative

sentiment. Although, more questions are having positive sentiment than negative sentiment, the

difference between such ratios is not statistically significant.
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Table 6.7
Range, Central Tendency, and Standard Deviation

Attributes
Promoted Questions Discouraged Questions

Min Max Mean Median Std. Dev. Min Max Mean Median Std. Dev.

Title Quality 0 1 0.68 0.67 0.24 0 1 0.64 0.67 0.26

Text Readability 0 100 19.85 19.15 5.71 0 100 16.86 16.46 6.85

Code Readability 0 1 0.15 0.003 0.28 0 1 0.15 0.003 0.28

Text-code Ratio 0 2660 2.65 1.20 7.14 0 5995 3.93 1.65 20.72

Text-code Correlation 0 1 0.10 0.07 0.11 0 1 0.09 0.05 0.12

No. of API Used 0 604 7.06 3 14.11 0 817 7.34 3 16.40

Topic Entropy 0 1.0 0.13 0.11 0.06 0 1.0 0.17 0.15 0.08

Metric Entropy 0 0.04 0.006 0..006 0.004 0 0.04 0.008 0.008 0.004

Table 6.8
Feature Ranks (Information Gain)

Rank Feature Score

1 Topic Entropy 0.6931

2 Metric Entropy 0.5328

3 Text-code Ratio 0.3156

4 Code Readability 0.2803

5 Text Readability 0.2486

6 Text-code Correlation 0.0167

7 Title Quality 0.0044

8 Sentiment Polarity 0.0040

9 Code Understandability 0.0021

10 Code Reusability 0.0017

Table 6.9
Feature Analysis using Decision Trees

Rank Feature Accuracy

1 Topic Entropy 66.36%

2 Text Readability 63.44%

3 Metric Entropy 60.49%

4 Text-code Ratio 56.25%

5 Text-code Correlation 54.11%

6 Sentiment Polarity 53.95%

7 Code Understandability 53.01%

8 Title Quality 52.86%

9 Code Readability 52.18%

10 Code Reusability 52.17%

6.6 Answering RQ2: Analysis, Classification, and Prediction of

Questions base on their Quality

In this section, we present the methodologies towards understanding the characteristics of promoted and

discouraged questions. Next, we describe the machine learning models with their settings. We then feed the

models with the features described at section 6.5, and evaluate their performance. Finally, we compare our

models’ performances with the baseline models.

6.6.1 Range, Central Tendency, and Standard Deviation

In order to investigate the characteristics of promoted and discouraged questions, we measure the ranges

(e.g., max, min), central tendencies (e.g., mean, median), and standard deviations of the attributes (Table

6.7) extracted from both the question classes. We find that the arithmetic mean of three attributes (e.g., title
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quality, text readability, text-code correlation) of promoted questions are greater than those of the discouraged

questions. That is, titles of promoted questions summarize their description more appropriately. Promoted

questions also describe the code segments more than those of the discouraged questions. But the description

texts of promoted questions are harder to read than those of the discouraged questions. According to our

analysis, code elements within the texts of promoted questions hurt the readability. On the other hand, four

attributes (e.g., topic entropy, metric entropy, no. of API used, text-code ratio) of promoted questions has a

lower arithmetic mean than discouraged questions. It means that promoted questions are less ambiguous, use

less common terms, easy to understand, and well explained. Except for code readability, standard deviations

of all the attributes from the promoted samples are smaller than those of the discouraged samples. It means

that the attributes of promoted samples are close to the mean, on the contrary, the attribute values of

discouraged samples are farther away from the mean, on average. We exclude parsability and sentiment

polarity from this type of measurement because they have either nominal or categorical values.

6.6.2 Ranking Features

In the previous section, we showed that there are several attributes, whose values are different for promoted

and discouraged questions. Such findings indicate that these attributes might be the key estimators in

predicting whether a question will be up-voted or down-voted. However, we do not know yet which attributes

are more important than others in differentiating up-voted and down-voted questions. Therefore, a ranking of

these attributes might help to select the top N estimators in predicting questions. Learning the appropriate

values from millions of questions in a high dimensional space is computationally expensive. Thus, reducing

the number of attributes is important. We use the popular statistical measures such as information gain

based ranking algorithm to rank our attributes as follows.

Information Gain: We attempt to determine which attributes are stronger than others for discriminat-

ing promoted and discouraged questions. We thus employ information gain based feature ranking technique

because it can estimate the discrimination power of each of the given attributes. In information theory, the

information gain of a random variable is the change in information entropy between a prior state and a state

that takes some information [102]. Therefore, the information gain of a particular attribute in classifying

either the questions will be promoted or discouraged is as follows.

InfoGain(C, ai) = H(C)−H(C|ai) (6.4)

where C represents a particular class (i.e., promoted or discouraged), ai denotes the attribute, and H denotes

information entropy. As shown in Table 6.8, topic entropy has the highest information gain. That is,

topic entropy might discriminate the questions with the maximum accuracy. Metric entropy, text-code

ratio, code readability, and text readability have the second, third, fourth and fifth highest information gain

respectively. However, gain ratio of the remaining attributes is either small or negligible. Next, we analyze

the discrimination power of each of the attributes using decision trees.
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Figure 6.13: Portion of a decision tree trained on our dataset.

Analysis with Decision Trees: In this study, we not only attempt to predict the quality of a question

during question submission time but also to understand which attributes influence the quality of a question.

For this reason, we use Decision Trees, a machine learning classification technique whose output can be easily

interpreted. A decision tree is a tree in which each internal node (non-leaf) is labelled with a feature, and

arcs from any internal node are labelled with exclusive predicates that summarize possible distinct values

for the feature [93]. Each leaf of the tree is labelled with a class. As an example, we show a portion of

our decision tree (Figure 6.13) trained on our balanced dataset. As we can see, internal nodes represent

the quality assessment metrics (e.g., topic entropy). The class (i.e., leaf node) represents the quality to be

assigned to the questions exhibiting the conjunction of predicates represented by arcs connecting the root to

the leaf. Then we attempt to see how each attribute can classify the promoted and discouraged questions.

Table 6.9 shows the classification accuracy of each of the features. We see that topic entropy can classify

the questions with overall 66.36% accuracy. Text readability, metric entropy, and text-code ratio have the

second, third, and fourth highest discrimination power respectively. As opposed to information gain, we find

that text-code correlation has a higher classification accuracy than code readability. However, we see that

four of the top five attributes are common in both of the cases. Thus, we select these four features (e.g., topic

entropy, text readability, metric entropy, code-text ratio) as an optimal feature set, and analyse the models’

performance using all the features and the top four separately.

6.6.3 Classification Models and Settings

According to our comparative study, the relationship between question classes and their corresponding feature

values might be complex. Thus, we choose five popular machine learning classification techniques such as –
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Decision Trees (DT), Random Forest (RF), K-Nearest Neighbors(KNN), Artificial Neural Networks (ANN),

Naive Bayes (NB) – that have different learning strategies to estimate the quality of questions. We use

Scikit-learn [90], one of the popular and widely used tools to implement the techniques.

Parameter Tuning. Tuning parameters in classifiers is important because it changes the heuristics

determining how they learn [21]. For example, it controls the number of decision trees to use in Random Forest

or the number of clusters in K-Nearest Neighbors (KNN). Models trained with suboptimal parameter settings

may underperform as parameter settings depend on the dataset [40]. To select the best model configuration,

we use GridSearchCV, the cross-validated grid search algorithm of Scikit-learn [90]. The GridSearchCV

algorithm works by running and evaluating the model performance of all possible combinations of parameters

provided to it. We only tuned significant parameters for each of the models. We choose a number of plausible

options for tuning the important parameters of the machine learning models. GridSearchCV does two tasks in

parallel (1) cross-validation and (2) parameter tuning. Finally, it returns the values for a model’s parameters

that maximize the accuracy of the model. Here, we keep the default values for the optional parameters. We

also investigate the efficiency of both training and test split set and choose the parameters thereby to avoid

model overfitting.

6.6.4 Metrics of Success

When learning from imbalanced datasets (i.e., number of promoted samples are different from discouraged

samples), the evaluation of classification performance must be carried out using specific metrics to consider

the class distribution and properly assess the effectiveness of learning algorithms [21]. Concerning a reliable

assessment of the classification performance of prediction models, the selection of the evaluation criteria is

an important part. In a binary classification problem like question quality prediction, a confusion matrix

records the results of correctly and incorrectly recognized examples of each class. We can obtain several

metrics from the given confusion matrix for the classification performance of both positive and negative

classes independently. We thus review several performance metrics and select the most appropriate ones.

The machine learning community often measures the prediction accuracy as a simple scalar performance

metrics for binary classification. However, accuracy is not capable of providing sufficient information about

the performance of a classifier when the dataset is imbalanced [42, 96]. According to He and Garcia [44],

accuracy might lead to an incorrect conclusion as the measure is highly sensitive to changes in data. In such

cases, precision is a useful metric to capture the effect on a classifier performance of having a larger number

of negative examples [27]. He and Garcia [44] argued that precision is still sensitive to changes in the data

distribution and it cannot assert how many positive examples are classified incorrectly. Unlike precision, recall

is not sensitive to data distribution. However, any assessment based solely on recall would be inadequate, as it

provides no insight into how many examples are incorrectly classified as positives. Neither precision nor recall

can provide a reliable assessment of classification performance [21]. These individual scalar metrics can be

combined to build more reliable measures of classification performance, particularly in imbalanced situations.
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Specifically, these aggregated metrics of performance include F-measure that represents the harmonic mean

of precision and recall.

Our dataset is imbalanced. The promoted questions are larger than the discouraged questions as shown in

section 6.3. Imbalanced dataset might generate suboptimal classification models that provide good coverage

of the majority of examples, whereas the minority ones are frequently misclassified [44]. We thus measure

precision, recall, F1-score, and overall accuracy to evaluate the model performance so that we can provide

a better conclusion on the model performances. In addition, we balance our dataset by under-sampling the

promoted questions. Then, we apply the classifiers on the balanced dataset and report the results.

Table 6.10
Performance of Classifiers (H indicates the highest values.)

Classifier Features Dataset
Promoted Question Discouraged Question Overall

Precision Recall F1-Score Precision Recall F1-Score Accuracy

DT

All
Imbalanced 90.90 89.98 90.44 59.27 61.80 60.51 H 84.60

Balanced 74.56 74.17 74.37 74.30 74.70 74.50 74.30

Top-4
Imbalanced 91.85 91.10 91.48 H 63.51 65.73 64.60 H 86.26 H

Balanced 75.37 74.90 75.14 H 75.06 75.53 75.29 H 75.21 H

RF

All
Imbalanced 88.39 94.03 91.12 H 65.29 47.65 55.09 85.18 H

Balanced 76.98 72.09 74.46 73.76 78.44 76.03 H 75.27

Top-4
Imbalanced 89.01 94.45 91.45 68.22 50.54 58.06 86.07

Balanced 75.17 71.90 73.50 73.07 76.25 74.62 74.07

ANN

All
Imbalanced 83.01 97.45 89.65 58.79 15.40 24.41 81.80

Balanced 73.54 79.41 76.36 H 77.62 71.42 74.39 75.42 H

Top-4
Imbalanced 76.42 89.80 82.57 68.61 44.60 54.06 74.73

Balanced 70.37 75.79 72.98 73.77 68.08 70.81 71.94

KNN

All
Imbalanced 76.11 88.77 81.95 66.33 44.27 53.10 73.93

Balanced 66.87 74.71 70.57 71.35 62.99 66.91 68.85

Top-4
Imbalanced 76.14 88.74 81.96 66.34 44.37 53.17 73.95

Balanced 66.43 73.61 69.74 70.41 62.80 66.39 68.21

Gaussian NB

All
Imbalanced 82.52 95.19 88.40 41.51 14.49 21.48 79.79

Balanced 55.73 90.60 69.01 74.88 28.01 40.77 59.31

Top-4
Imbalanced 82.59 95.97 88.78 45.36 14.20 21.63 80.37

Balanced 56.62 89.59 69.39 75.07 31.35 44.23 60.47

6.6.5 Results

Table 6.10 summarizes the classification results. We apply 10-fold cross validation for training and testing

each of the machine learning models. Hence, nine folds of our data are used for training and one fold is

applied to testing at any moment and this process iterates until all of the data has been used for training and

testing. Then the results are averaged from the 10 models, and the final performance is reported. According

to our comparative study, the relationship between question classes and corresponding feature values might

be complex. We thus apply the machine learning models (1) on all of the features and (2) on top 4 features.

We then analyse the results separately.
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Decision Trees classifies the promoted questions with a maximum of about 91% precision and 90% recall

when we use all of the features and an imbalanced dataset. The precision is about 60% for the discouraged

questions for imbalanced dataset. The imbalanced dataset might generate suboptimal classification models.

When we trained the model on the balanced dataset, the precision increases from about 60% to 75%. The

overall classification accuracies for the balanced and imbalanced dataset are about 75% and 85% respectively.

When we choose the top-4 features, the evaluation metrics show almost similar results as using all the features.

It indicates that the remaining features have very low effect on the classification models. When we train the

models with Random Forest and an imbalanced dataset, we see that precision of the discouraged questions

increases from about 60% to 66% but recall decreases about 14%. Similar results we got when we train the

models with top-4 features. Among the remaining three machine learning models, ANN performs reasonably

well when we use a balanced dataset and K-Nearest Neighbors performs well while using top-4 features.

K-Nearest Neighbors usually performs better with a lower number of important features and it is not much

dependent on the training phase. Both the ANN and Gaussian Naive Bayes perform poor for classifying

discouraged questions when we train them with an imbalanced dataset.

As shown in Table 6.10, we mark the highest performance by H. We see that when models are trained

with all the features, Random Forest and ANN outperform the other models either it is trained with a

balanced or an imbalanced dataset. These models have the highest overall accuracy for both the datasets.

When we choose the top-4 features to train the model, Decision Trees outperforms the other models with the

highest F1-score and overall accuracy for both the questions classes and datasets. This model also have the

highest F1-score in classifying discouraged questions with an imbalanced dataset. ANN outperforms the other

models with the highest F1-score in classifying promoted questions when we train the model with a balanced

dataset. Unfortunately, Gaussian Naive Bayes performs poor in all the settings. Naive Bayes classifier makes

a very strong assumption on the shape of the data distribution. That is, any two of the features are either

independent or not given the output class. Such an assumption might affect the models performance. Naive

Bayes also suffers from imbalanced (resulting in skewed probabilities) classes and continuous features[98].

After analysing the results, it could be concluded that tree-based classifiers (e.g., Decision Trees) can

generate a better model to classify the questions based on our dataset and features. Probabilistic models like

Naive Bayes could not generate optimal models especially using an imbalanced dataset.

6.6.6 Performance Comparison with Baseline Model

To the best of our knowledge, agreement analysis between subjectivity and objectivity on SO is still an

unmet attempt. However, Ponzanelli et al. [93] attempt to classify the questions based on quality and build a

machine learning model to discriminate the bad (i.e., score <0) and good quality (i.e., score >0) questions.

They identify three sets of metrics that include textual and non-textual features of SO questions. The metrics

are SO (MSO), readability (MR) and user popularity (MP ). However, the attributes of the user popularity

(e.g., up-votes, down-votes) metric are directly or indirectly associated with the subjective evaluation. In

105



Precision Recall F1-Score Accuracy
0%

25%

50%

75%

100%

Proposed Method Luka

(a) Imbalanced dataset

Precision Recall F1-Score Accuracy
0%

25%

50%

75%

100%

Proposed Method Luka

(b) Balanced dataset

Figure 6.14: Results of Decision Trees classifier.
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Figure 6.15: Results of Random Forest classifier.

this article, we investigate objective quality metrics. We thus select the MSO and MR metrics to prepare an

equivalence set of attributes.

Figures 6.14-6.18 show the comparative results of our models and the baseline models by Ponzanelli et al.

[93]. We use the same settings of the machine learning models and identical dataset to compare the models’

performances. First, we calculate precision, recall, F1-score, and overall accuracy. Then we compare the

values of each of the evaluation metrics between our models and baseline models. When we train our model

with decision trees and use an imbalanced dataset, both the F1-score and accuracy are about 85% (Figure

6.14a). They are as low as about 76% and 82%, when we train the model with the attributes used in the

baseline study [93]. The performance is also significantly higher when we use a balanced dataset. The F1-score

and overall accuracy are about 10% higher than the baseline model (Figure 6.14b). We see that the overall

performance of the baseline model improves when we train the model with Random Forest. Nonetheless,

our models outperform the baseline models. The F1-score is 10% higher when we use an imbalanced dataset

(Figure 6.15a). Our models also outperforms the baseline models when we train them using Artificial Neural

Network (Figure 6.16) and K-Nearest Neighbors (Figure 6.17). Here, high dimensionality is a potential factor

that reduces the performance of K-Nearest Neighbors. As shown in Figure 6.18b, the model by Ponzanelli

et al. [93] outperforms our model only when we train the model with Gaussian Naive Bayes and use a
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Figure 6.16: Results of Artificial Neural Network classifier.
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Figure 6.17: Results of K-Nearest Neighbors classifier.

balanced dataset. The underlying data distribution and independent nature of a few of their features might

explain the higher performance of their model when using Gaussian Naive Bayes. However, our analysis

using five machine learning classifiers with diverse working principles concludes that our features have higher

discrimination power to classify promoted and discouraged questions than those of the baseline models.

6.6.7 Prediction Model, Performance Evaluation, and Comparison with Base-

line Model

We attempt to predict a question will be up voted or down voted during their submission time. Among the

five classification models, Decision Trees performs high on average. Thus, we develop a prediction model with

Decision Trees. We use the 90% questions that posted in SO earlier to training the model and remaining

10% that posted later to test the model. Although we do not have any time-dependent features, we make

sure that we estimate the quality of unseen questions based on past questions.

Table 6.12 shows the results of the prediction model. The model predicts the question during their sub-

mission time with a maximum of about 87% accuracy. Our model also shows promising results in predicting

discouraged question with a maximum of about 76% precision even when the dataset is imbalanced. Figure
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Figure 6.18: Results of Naive Bayes (Gaussian) Trees classifier.

Table 6.11
Findings summary of Comparative Study

Metric Promoted Discouraged Agreement

Title Quality – – Neither agree nor disagree

Text Readability Low High Disagree

Code Readability – – Neither agree nor disagree

Text-code Ratio High Low Agree

Text-code Correlation High Low Agree

Code Reusability Low High Disagree

Code Understandability

High

(Statically typed languages)

Low

(Dynamically typed languages)

Low

(Statically typed languages)

High

(Dynamically typed languages)

Either agree or disagree

Topic Entropy Low High Agree

Metric Entropy Low High Agree

Sentiment Polarity – – Neither agree nor disagree

6.19 shows the comparative performance between our model and baseline model. We see that our model

outperforms the baseline model predicting the questions during the submission time with about 8% accuracy

and 7%–8% precision.

6.7 Findings Summary

Our study exposes several insights that might prevent a question from getting downvotes.

Be aware of choosing topics. Questions discussing only common topics (e.g., Python, Java) could

prevent the users locate the questions of their interest. Users often discouraged choosing improper topics

(e.g., tags) by downvotes. According to our investigation, discouraged questions use more common topics

than those of promoted questions.

Code reusability does not always guarantee high quality. Only those code statements should

be added that are required to understand reported issues and the redundant code should be avoided. Long
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Table 6.12
Performance of Prediction Model

Classifier Features Dataset
Promoted Question Discouraged Question Overall

Precision Recall F1-Score Precision Recall F1-Score Accuracy

DT

All
Imbalanced 90.79 89.87 90.32 58.68 67.21 59.61 84.41

Balanced 73.57 73.16 73.36 73.34 73.75 73.55 73.46

Top-4
Imbalanced 91.97 91.15 91.56 63.82 66.65 65.01 86.40

Balanced 75.24 74.91 75.07 75.06 75.39 75.23 75.15
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Figure 6.19: Prediction Results with Decision Trees classifier.

and redundant code waste the developers time unnecessarily which might also increase the chance of getting

downvotes. In this study, we see that code segments from discouraged questions have a higher parsability

rate. However, they have redundant code statements.

Lack of code explanation hurts. A clear explanation of code example might influence the question

quality. We also find that the usage of appropriate technical terms is important. A short and not-technical

explanation might mislead the users to understand the actual problem.

Sentiment polarity is not a big concern. A few recent studies report that sentiment polarity (e.g.,

positive, negative) might influence the quality of posts. Calefato et al. [18] find that the sentiment expressed

in the answerers’ comments might help to estimate answers quality. According to our analysis, sentiment

polarity has less impact on the subjective quality assessment of SO questions. In fact, about 50% of the

questions have neither positive nor negative sentiment.

Programming language matters. In some cases, the agreement between subjective and objective

quality estimation depends on programming languages. For example, code understandability agrees with

subjective evaluation for only the statically typed programming languages such as Java and C#. However,

such quality estimation of the dynamically typed languages such as JavaScript and Python disagrees with

the subjective evaluation.
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6.8 Related Work

Several aspects of SO are investigated in recent studies due to the growing popularity and importance of this

online Q&A site. Most of the previous studies in mining Q&A sites concentrate on assessing the quality of

the questions and answers [7, 21, 93, 94, 101, 144], understanding the way how developers interact among

them on Q&A sites [127], providing empirical evidence on writing high-quality questions and answers [13, 20],

the usability of the code segments attached in the answers [46, 147], and the impact of the sentiment polarity

on getting answers [18, 80].

Ponzanelli et al. [93, 94] devise an approach to classify the questions based on their quality. In particular,

they identify the low quality questions to improve the capability of manual review process of SO. They

define three sets of metrics to measure the questions’ quality namely SO (MSO), readability (MR) and

user popularity (MP ). The attributes of the MP metric are derived from a direct or indirect evaluation of

the users. However, we attempt to assess the quality of questions using objective quality metrics. While

Ponzanelli et al. [93] attempted to improve the review process, our goal is to examine either the subjective

evaluation of SO questions or answers agree with objective evaluation or not. We measure ten objective

quality aspects (e.g., text readability, topic entropy) and build five machine learning models using them to

predict promoted and discouraged questions. Our models significantly outperform the models by Ponzanelli

et al. [93]. Calefato et al. [21] conduct an empirical assessment to predict the best answers in technical Q&A

sites. When they are attempting to assess the quality of answers, we are examining the subjective quality

control mechanism of SO with objective quality metrics.

Several studies [24, 35, 35, 39, 68, 106] measure the text readability as a part of objective quality assess-

ment. In this study, we also compute the text readability of the question description to assess the reading

ease of description texts. We find a significant difference in text readability between promoted and discour-

aged questions. Besides text readability, we measure the readability of the code segments included in the SO

questions as suggested by many studies [16, 17, 26, 95, 103, 126]. Code segments included in SO are often

incomplete and noisy, so the readability is found low for both the question classes. We also measure the

understandability of the code segments as existing studies suggest [63, 104, 128]. Zhang et al. [150] report

that a large number of APIs hurt the code understandability. We thus count the number of APIs used in the

code segment to estimate understandability of code segments.

Several recent studies [46, 147] focus on assessing usability (e.g., parsability) of the code segments of

Q&A sites. Yang et al. [147] analyse the usability of 914,974 Java code snippets on SO and report that only

3.89% are parsable. They analyse the code segments found in only the accepted answers of SO. However,

we investigation parsability of the code segments included in the question body to estimate their reusability.

Although, we found a higher parsing rate than the answer code segments reported by Yang et al. [147], the

parsing rate of code segments included in either promoted or discouraged questions is close to each other.

Several studies [18, 20, 110, 135] guide the users to understand the factors for getting fast answers,
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create quality postings or mining successful answers based on some actionable factors such as information

presentation (e.g., title length), ratio of upper-case letters and question posting time. We also find several

metrics that affect the questions’ quality. For example, users often provide down-votes when the topics of the

questions are less focused or ambiguous. Duijn et al. [29] also relate the quality of code segments included

in a question to the quality of the question itself. They find that quality questions require quality code.

They inspect around 200 Java code segments of SO to find the construct that indicates code quality. Our

automatic assessment of the readability of millions of code segments weakly agrees with their findings.

In addition to that several recent works [19, 51, 61, 80, 81] focus on identifying developers’ emotions

(e.g., positive, negative) by sentiment analysis to the content of communication traces left in collaborative

Q&A sites like SO. Novielli et al. [80] claimed that the emotional style of a technical question does influence

the chance of promptly getting a satisfying answer. However, we investigate whether the sentiment polarity

influences the quality of the SO questions. Hence, the sentiment polarity does not have a noticeable impact

on the question quality.

To the best of our knowledge, this is the first attempt to examine the subjective evaluation of SO with

objective quality metrics. We conduct a comparative study between subjective and objective evaluation with

2.5 million questions. We also select the key features that might influence the quality of questions. We

examine our features’ strength using five machine learning models in predicting promoted and discouraged

questions that significantly outperforms the baseline models.

6.9 Threats to validity

Threats to external validity relate to the generalizability of results. We analyze about 2.5 millions of SO

questions. However, the approaches we tried might show results variation when applied to different types

of programming problems. To mitigate this issue, we chose to include questions related to four different

programming languages - Java, C#, JavaScript and Python in our dataset. Two of them are dynamically

typed languages and the remaining two are statically typed languages. An evaluation of our approach that

involves questions from four different languages could measure the effect of this threat. The question quality

classification models might be sensitive to our dataset. Therefore, we build five different classification models

and analyze their performance individually.

Threats to internal validity relate to experimental errors and biases [124]. The quality assessment of the

SO questions is threatened by the evaluation systems. We assess the quality of questions using existing tools

and approaches. However, we manually investigate the questions while the results seem inconsistent. This

mixed approach mitigates this threat.

Statistical Conclusion threats concern the fact that whether the data is sufficient to support the claims.

We considered statistically significant samples in all our result analyses. We relied on the crowd assessment

to collect data, not on the manual inspection of questions that made possible to gather enough data.
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Another issue is that the promoted and discouraged question sample are imbalanced. The number of

promoted sample is higher than the discouraged sample for all the programming problems. To resolve this

imbalanced situation, we undersampled promoted questions to balance the dataset. Then we analyse the

results for both the balanced and imbalanced dataset. Thus we mitigate this issue.

6.10 Conclusion

Q&A web sites like SO are providing a new means for programmers to participate in social learning. The

quality of SO questions or answers is assessed by users through voting. To keep the evaluation process

flawless, we attempt to investigate the agreement between subjective evaluation of questions by the users and

objective quality assessment. We use ten objective metrics from the literature to capture all the key aspects

of objective quality of a question of the SO Q&A site. We find that topic entropy, metric entropy, text-code

ratio, text-code correlation completely agree with the subjective evaluation. Reusability (i.e., parsability) of

the code segments and text readability completely disagree with the subjective evaluation. However, code

understandability either agree or disagree based on the programming languages, whereas title quality, code

readability, and sentiment polarity have the almost equal outcome for both the promoted and discouraged

questions. Our investigation might provide an initial benchmark for further agreement analysis between

subjectivity and objectivity.

Understanding and classifying question quality is essential to maintain a good user experience of Q&A

services. Low quality questions are regarded as less useful for online Q&A sites. We developed five different

machine learning models to classify the promoted and discouraged questions. Our machine learning models

can classify the questions with a maximum of about 76%-87% accuracy which is significantly higher than

that of the state-of-the-art models. We further attempt to predict questions at the time of the question

submission. Our machine learning model predicts the discouraged questions automatically with a maximum

of about 76% precision. Predicting potentially down-voted questions in advance might greatly help users

improve the questions during their submission.
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7 Conclusion

7.1 Concluding Remarks

Technical question and answer (Q&A) websites such as SO has emerged as one of the largest repositories

of valuable software development knowledge. It accumulates millions of questions related to programming

problems and their solutions as answers. The number of questions submitted at SO has been increasing

steadily per month. To help the user community, editors and maintenance team of SO, we thus conduct four

studies. In particular, we assess the quality of questions (unanswered and answered), code segments included

with the questions, editing mechanism, and also the subjective assessment system of SO contrasting it with

ten objective quality metrics.

In our first study, we compare unanswered and answered questions of SO quantitatively and qualitatively.

We analyze 4.8 million questions and develop machine learning models to predict the unanswered questions

during their submission. First, we conduct quantitative analysis and find that topics discussed in a question,

the experience of the question submitter, and the readability of question texts are likely to predict whether

a question will be answered or not. Second, we manually investigate 200 unanswered and 200 answered

questions. According to our investigation, the qualitative findings support the quantitative findings. Our

manual analysis also reveals several non-trivial insights, for example, avoid multiple issues in a single question,

that could guide users especially novice users to improve their questions. Third, we build four models to

predict the unanswered questions during their submission. Our models can predict the unanswered questions

with about 78% precision and about 79% overall accuracy, which are significantly higher than that of two

state-of-the-art models. We also test our models’ performance with questions from two different programming

languages (i.e., Go and C++). In this case, our models perform well that ensure the robustness of our models

and features.

In the second study, we manually analyze 400 randomly selected questions from SO and investigate the

reproducibility of their reported issues using their code segments. We classify the status of reproducibility

into two major categories - reproducible and irreproducible. We can reproduce about 68% of issues using

the submitted code segments included with the questions after performing minor or major modifications to

them. We also expose the challenges of why several issues could not be reproduced using the attached code

segments. We then attempt to see the correlation between the reproducibility of issues and answer meta-data.

According to our investigation, the reproducibility of question issues is likely to encourage more high-quality

responses including the acceptable answers. Thus, the reproducibility of issues can also be treated as a novel
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metric of question quality for SO which was ignored by the earlier studies.

In the third study, we study how the questions and answers are edited by the SO users. We qualitatively

analyze 1,532 edits in SO. We primarily focus on the rollback edits and the ambiguities related to the rollback

edits. We find a total of 14 rollback reasons and eight types of ambiguities that are prevalent in the rejected

edits. The ambiguities confuse developers while editing. We also develop algorithms to automatically detect

that ambiguities that showed a high degree of precision (average 0.99). When we run the algorithms on all

rollback edits, we find several ambiguities (e.g., presentation of contents) are consistently present in the edits,

while ambiguities such as temporal are rapidly rising (i.e., accidental removal of already approved edits due

to a more recent rejected edit).

In our fourth study, we concentrate on SO posts’ assessment mechanism rather than focusing on the con-

tent to ensure a non-biased, reliable quality assessment mechanism. In particular, we compare the subjective

assessment of questions with their objective assessment using 2.5 million questions and ten text analysis met-

rics. We find that topic entropy, metric entropy, text-code ratio, text-code correlation completely agree with

the subjective evaluation. Reusability (i.e., parsability) of the code segments and text readability completely

disagree with the subjective evaluation. However, code understandability either agree or disagree based on

the programming languages, whereas title quality, code readability, and sentiment polarity have an almost

equal outcome for both the promoted and discouraged questions. We also developed five machine learning

models to classify the promoted and discouraged questions. Our machine learning models can classify the

questions with a maximum of about 76%-87% accuracy, which is significantly higher than that of the state-of-

the-art models. We further attempt to predict promoted and discouraged questions during their submission.

Our machine learning model predicts the discouraged questions automatically with a maximum of about

76% precision. Discouraged questions hurt the quality of the knowledge base. Thus, predicting potentially

down-voted questions in advance might greatly help users improve the questions during their submission.

7.2 Future Works

While in this thesis, we focus on the quality assessment of both the content and assessment mechanism, in the

future, we plan to extend the studies and develop tool supports that help the users to ask better questions,

attach appropriate code segments, and avoid ambiguous edits. This section discusses our future plans with

the research work in the thesis.

Issue Reproducer: In the second study (Chapter 4), we manually investigate 400 questions and attempt

to reproduce the issues discussed in the questions using the included code segments. In that study, we only

investigate the questions related to Java programming language which is a statically typed programming

language. Next, we will investigate the questions related to any dynamically typed programming language

(e.g., JavaScript, Python) to see whether we can reproduce the same results. It will confirm the generaliz-

ability of our findings. In the future, we also plan to develop an automated tool supports for predicting the
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reproducibility of a given question issue after analyzing the included code segments with questions.

Ambiguity Protector: In the third study (Chapter 5), We investigate the quality and trust attributes

that may arise at the intersection of user collaboration and shared content in developer forums. We consider

the body edits of SO and report the rollback reasons and ambiguities of rollback reasons. Next, we will

extend this study in two ways – (1) we will consider the tag and title edits, and (2) based on the insights

gained, we will focus on the development of a browser plugin that automatically identifies the ambiguities in

edits and suggest the users avoid these ambiguities.

Unanswered Question Detector: In the first study (Chapter 3), we build machine learning models to

predict the unanswered questions during their submission. In the future, we plan to develop tool supports

(e.g., browser plugin) that will detect the potentially unanswered questions in advance during question sub-

mission and recommends question submitters to revise and improve their potentially unanswered questions.
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