885 research outputs found

    Escaping RGBland: Selecting Colors for Statistical Graphics

    Get PDF
    Statistical graphics are often augmented by the use of color coding information contained in some variable. When this involves the shading of areas (and not only points or lines) - e.g., as in bar plots, pie charts, mosaic displays or heatmaps - it is important that the colors are perceptually based and do not introduce optical illusions or systematic bias. Here, we discuss how the perceptually-based Hue-Chroma-Luminance (HCL) color space can be used for deriving suitable color palettes for coding categorical data (qualitative palettes) and numerical variables (sequential and diverging palettes).Series: Research Report Series / Department of Statistics and Mathematic

    Synthesis of color palettes

    Get PDF

    GreenVis: Energy-Saving Color Schemes for Sequential Data Visualization on OLED Displays

    Get PDF
    The organic light emitting diode (OLED) display has recently become popular in the consumer electronics market. Compared with current LCD display technology, OLED is an emerging display technology that emits light by the pixels themselves and doesn’t need an external back light as the illumination source. In this paper, we offer an approach to reduce power consumption on OLED displays for sequential data visualization. First, we create a multi-objective optimization approach to find the most energy-saving color scheme for given visual perception difference levels. Second, we apply the model in two situations: pre-designed color schemes and auto generated color schemes. Third, our experiment results show that the energy-saving sequential color scheme can reduce power consumption by 17.2% for pre-designed color schemes. For auto-generated color schemes, it can save 21.9% of energy in comparison to the reference color scheme for sequential data

    Color Maker: a Mixed-Initiative Approach to Creating Accessible Color Maps

    Full text link
    Quantitative data is frequently represented using color, yet designing effective color mappings is a challenging task, requiring one to balance perceptual standards with personal color preference. Current design tools either overwhelm novices with complexity or offer limited customization options. We present ColorMaker, a mixed-initiative approach for creating colormaps. ColorMaker combines fluid user interaction with real-time optimization to generate smooth, continuous color ramps. Users specify their loose color preferences while leaving the algorithm to generate precise color sequences, meeting both designer needs and established guidelines. ColorMaker can create new colormaps, including designs accessible for people with color-vision deficiencies, starting from scratch or with only partial input, thus supporting ideation and iterative refinement. We show that our approach can generate designs with similar or superior perceptual characteristics to standard colormaps. A user study demonstrates how designers of varying skill levels can use this tool to create custom, high-quality colormaps. ColorMaker is available at https://colormaker.orgComment: To appear at the ACM CHI '24 Conference on Human Factors in Computing System

    Aesthetic-Driven Image Enhancement by Adversarial Learning

    Full text link
    We introduce EnhanceGAN, an adversarial learning based model that performs automatic image enhancement. Traditional image enhancement frameworks typically involve training models in a fully-supervised manner, which require expensive annotations in the form of aligned image pairs. In contrast to these approaches, our proposed EnhanceGAN only requires weak supervision (binary labels on image aesthetic quality) and is able to learn enhancement operators for the task of aesthetic-based image enhancement. In particular, we show the effectiveness of a piecewise color enhancement module trained with weak supervision, and extend the proposed EnhanceGAN framework to learning a deep filtering-based aesthetic enhancer. The full differentiability of our image enhancement operators enables the training of EnhanceGAN in an end-to-end manner. We further demonstrate the capability of EnhanceGAN in learning aesthetic-based image cropping without any groundtruth cropping pairs. Our weakly-supervised EnhanceGAN reports competitive quantitative results on aesthetic-based color enhancement as well as automatic image cropping, and a user study confirms that our image enhancement results are on par with or even preferred over professional enhancement

    PaletteNeRF: Palette-based Color Editing for NeRFs

    Full text link
    Neural Radiance Field (NeRF) is a powerful tool to faithfully generate novel views for scenes with only sparse captured images. Despite its strong capability for representing 3D scenes and their appearance, its editing ability is very limited. In this paper, we propose a simple but effective extension of vanilla NeRF, named PaletteNeRF, to enable efficient color editing on NeRF-represented scenes. Motivated by recent palette-based image decomposition works, we approximate each pixel color as a sum of palette colors modulated by additive weights. Instead of predicting pixel colors as in vanilla NeRFs, our method predicts additive weights. The underlying NeRF backbone could also be replaced with more recent NeRF models such as KiloNeRF to achieve real-time editing. Experimental results demonstrate that our method achieves efficient, view-consistent, and artifact-free color editing on a wide range of NeRF-represented scenes.Comment: 12 pages, 10 figure
    • …
    corecore