2,468 research outputs found

    A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package

    Get PDF
    The application of multi-attribute utility theory whose aggregation process is based on the Choquet integral requires the prior identification of a capacity. The main approaches to capacity identification proposed in the literature are reviewed and their advantages and inconveniences are discussed. All the reviewed methods have been implemented within the Kappalab R package. Their application is illustrated on a detailed example.Multi-criteria decision aiding; Multi-attribute utility theory; Choquet integral; Free software

    Quantum Mechanics as a Framework for Dealing with Uncertainty

    Full text link
    Quantum uncertainty is described here in two guises: indeterminacy with its concomitant indeterminism of measurement outcomes, and fuzziness, or unsharpness. Both features were long seen as obstructions of experimental possibilities that were available in the realm of classical physics. The birth of quantum information science was due to the realization that such obstructions can be turned into powerful resources. Here we review how the utilization of quantum fuzziness makes room for a notion of approximate joint measurement of noncommuting observables. We also show how from a classical perspective quantum uncertainty is due to a limitation of measurability reflected in a fuzzy event structure -- all quantum events are fundamentally unsharp.Comment: Plenary Lecture, Central European Workshop on Quantum Optics, Turku 2009

    Systems of Neutrosophic Linear Equations

    Get PDF

    G-CPT Symmetry of Quantum Emergence and Submergence -- An Information Conservational Multiagent Cellular Automata Unification of CPT Symmetry and CP Violation for Equilibrium-Based Many-World Causal Analysis of Quantum Coherence and Decoherence

    Get PDF
    An equilibrium-based YinYang bipolar dynamic Generalization of CPT (G -CPT) symmetry is introduced based on energy/information conservational quantum emergence-submergence. As a bottleneck of quantum computing, quantum decoherence or collapse has been plaguing quantum mechanics for decades. It is suggested that the crux of the problem can trace its origin back to the incompleteness of CPT symmetry due to the lack of holistic representation for equilibrium-based bipolar coexistence. In this work, the notion of quantum emergence-submergence is coined as two opposite processes with bipolar energy/information conservation. The new notion leads to G-CPT symmetry supported by a Bipolar Quantum Cellular Automata (BQCA) interpretation of quantum mechanics. It is shown that the new interpretation further leads to the unification of electromagnetic particle- antiparticle bipolarity and gravitational action-reaction bipolarity as well as CPT symmetry and CP violation into a philosophically, geometrically and logically different quantum gravity theory. On one hand, G -CPT symmetry enables a Bipolar Quantum Agent (BQA) to emerge as a bipolar quantum superposition or entanglement coupled to a globally coherent BQCA; on the other hand, G -CP violation supports a causal theory of BQA submergence or decoupling from the global coherence. In turn, BQAs can submerge from one world but emerge in another within YinYang bipolar quantum geometry. It is suggested t hat all logical, physical, social, biological and mental worlds are bipolar quantum entangled under G -CPT symmetry. It is contended that G -CPT symmetry constitutes an analytical paradigm of quantum mechanics and quantum gravity— a fundamental departure from “what goes around comes around ”. The new paradigm leads to a number of predictions and challenges
    corecore