7,239 research outputs found

    New Combinatorial Construction Techniques for Low-Density Parity-Check Codes and Systematic Repeat-Accumulate Codes

    Full text link
    This paper presents several new construction techniques for low-density parity-check (LDPC) and systematic repeat-accumulate (RA) codes. Based on specific classes of combinatorial designs, the improved code design focuses on high-rate structured codes with constant column weights 3 and higher. The proposed codes are efficiently encodable and exhibit good structural properties. Experimental results on decoding performance with the sum-product algorithm show that the novel codes offer substantial practical application potential, for instance, in high-speed applications in magnetic recording and optical communications channels.Comment: 10 pages; to appear in "IEEE Transactions on Communications

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    Fast Erasure-and-Error Decoding and Systematic Encoding of a Class of Affine Variety Codes

    Full text link
    In this paper, a lemma in algebraic coding theory is established, which is frequently appeared in the encoding and decoding for algebraic codes such as Reed-Solomon codes and algebraic geometry codes. This lemma states that two vector spaces, one corresponds to information symbols and the other is indexed by the support of Grobner basis, are canonically isomorphic, and moreover, the isomorphism is given by the extension through linear feedback shift registers from Grobner basis and discrete Fourier transforms. Next, the lemma is applied to fast unified system of encoding and decoding erasures and errors in a certain class of affine variety codes.Comment: 6 pages, 2 columns, presented at The 34th Symposium on Information Theory and Its Applications (SITA2011

    Towards joint decoding of binary Tardos fingerprinting codes

    Get PDF
    The class of joint decoder of probabilistic fingerprinting codes is of utmost importance in theoretical papers to establish the concept of fingerprint capacity. However, no implementation supporting a large user base is known to date. This article presents an iterative decoder which is, as far as we are aware of, the first practical attempt towards joint decoding. The discriminative feature of the scores benefits on one hand from the side-information of previously accused users, and on the other hand, from recently introduced universal linear decoders for compound channels. Neither the code construction nor the decoder make precise assumptions about the collusion (size or strategy). The extension to incorporate soft outputs from the watermarking layer is straightforward. An extensive experimental work benchmarks the very good performance and offers a clear comparison with previous state-of-the-art decoders.Comment: submitted to IEEE Trans. on Information Forensics and Security. - typos corrected, one new plot, references added about ECC based fingerprinting code

    Decoding of Projective Reed-Muller Codes by Dividing a Projective Space into Affine Spaces

    Full text link
    A projective Reed-Muller (PRM) code, obtained by modifying a (classical) Reed-Muller code with respect to a projective space, is a doubly extended Reed-Solomon code when the dimension of the related projective space is equal to 1. The minimum distance and dual code of a PRM code are known, and some decoding examples have been represented for low-dimensional projective space. In this study, we construct a decoding algorithm for all PRM codes by dividing a projective space into a union of affine spaces. In addition, we determine the computational complexity and the number of errors correctable of our algorithm. Finally, we compare the codeword error rate of our algorithm with that of minimum distance decoding.Comment: 17 pages, 4 figure

    An Introduction to Algebraic Geometry codes

    Full text link
    We present an introduction to the theory of algebraic geometry codes. Starting from evaluation codes and codes from order and weight functions, special attention is given to one-point codes and, in particular, to the family of Castle codes

    Complementary Sets, Generalized Reed-Muller Codes, and Power Control for OFDM

    Full text link
    The use of error-correcting codes for tight control of the peak-to-mean envelope power ratio (PMEPR) in orthogonal frequency-division multiplexing (OFDM) transmission is considered in this correspondence. By generalizing a result by Paterson, it is shown that each q-phase (q is even) sequence of length 2^m lies in a complementary set of size 2^{k+1}, where k is a nonnegative integer that can be easily determined from the generalized Boolean function associated with the sequence. For small k this result provides a reasonably tight bound for the PMEPR of q-phase sequences of length 2^m. A new 2^h-ary generalization of the classical Reed-Muller code is then used together with the result on complementary sets to derive flexible OFDM coding schemes with low PMEPR. These codes include the codes developed by Davis and Jedwab as a special case. In certain situations the codes in the present correspondence are similar to Paterson's code constructions and often outperform them
    • …
    corecore