8,974 research outputs found

    Explicit Space-Time Codes Achieving The Diversity-Multiplexing Gain Tradeoff

    Full text link
    A recent result of Zheng and Tse states that over a quasi-static channel, there exists a fundamental tradeoff, referred to as the diversity-multiplexing gain (D-MG) tradeoff, between the spatial multiplexing gain and the diversity gain that can be simultaneously achieved by a space-time (ST) block code. This tradeoff is precisely known in the case of i.i.d. Rayleigh-fading, for T>= n_t+n_r-1 where T is the number of time slots over which coding takes place and n_t,n_r are the number of transmit and receive antennas respectively. For T < n_t+n_r-1, only upper and lower bounds on the D-MG tradeoff are available. In this paper, we present a complete solution to the problem of explicitly constructing D-MG optimal ST codes, i.e., codes that achieve the D-MG tradeoff for any number of receive antennas. We do this by showing that for the square minimum-delay case when T=n_t=n, cyclic-division-algebra (CDA) based ST codes having the non-vanishing determinant property are D-MG optimal. While constructions of such codes were previously known for restricted values of n, we provide here a construction for such codes that is valid for all n. For the rectangular, T > n_t case, we present two general techniques for building D-MG-optimal rectangular ST codes from their square counterparts. A byproduct of our results establishes that the D-MG tradeoff for all T>= n_t is the same as that previously known to hold for T >= n_t + n_r -1.Comment: Revised submission to IEEE Transactions on Information Theor

    Non-supersymmetric heterotic model building

    Get PDF
    We investigate orbifold and smooth Calabi-Yau compactifications of the non-supersymmetric heterotic SO(16)xSO(16) string. We focus on such Calabi-Yau backgrounds in order to recycle commonly employed techniques, like index theorems and cohomology theory, to determine both the fermionic and bosonic 4D spectra. We argue that the N=0 theory never leads to tachyons on smooth Calabi-Yaus in the large volume approximation. As twisted tachyons may arise on certain singular orbifolds, we conjecture that such tachyonic states are lifted in the full blow-up. We perform model searches on selected orbifold geometries. In particular, we construct an explicit example of a Standard Model-like theory with three generations and a single Higgs field.Comment: 1+30 pages latex, 11 tables; v2: references and minor revisions added, matches version published in JHE

    Fault tolerance for holonomic quantum computation

    Full text link
    We review an approach to fault-tolerant holonomic quantum computation on stabilizer codes. We explain its workings as based on adiabatic dragging of the subsystem containing the logical information around suitable loops along which the information remains protected.Comment: 16 pages, this is a chapter in the book "Quantum Error Correction", edited by Daniel A. Lidar and Todd A. Brun, (Cambridge University Press, 2013), at http://www.cambridge.org/us/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-error-correctio

    Construction of a Large Class of Deterministic Sensing Matrices that Satisfy a Statistical Isometry Property

    Full text link
    Compressed Sensing aims to capture attributes of kk-sparse signals using very few measurements. In the standard Compressed Sensing paradigm, the \m\times \n measurement matrix \A is required to act as a near isometry on the set of all kk-sparse signals (Restricted Isometry Property or RIP). Although it is known that certain probabilistic processes generate \m \times \n matrices that satisfy RIP with high probability, there is no practical algorithm for verifying whether a given sensing matrix \A has this property, crucial for the feasibility of the standard recovery algorithms. In contrast this paper provides simple criteria that guarantee that a deterministic sensing matrix satisfying these criteria acts as a near isometry on an overwhelming majority of kk-sparse signals; in particular, most such signals have a unique representation in the measurement domain. Probability still plays a critical role, but it enters the signal model rather than the construction of the sensing matrix. We require the columns of the sensing matrix to form a group under pointwise multiplication. The construction allows recovery methods for which the expected performance is sub-linear in \n, and only quadratic in \m; the focus on expected performance is more typical of mainstream signal processing than the worst-case analysis that prevails in standard Compressed Sensing. Our framework encompasses many families of deterministic sensing matrices, including those formed from discrete chirps, Delsarte-Goethals codes, and extended BCH codes.Comment: 16 Pages, 2 figures, to appear in IEEE Journal of Selected Topics in Signal Processing, the special issue on Compressed Sensin

    Locally Decodable Quantum Codes

    Get PDF
    We study a quantum analogue of locally decodable error-correcting codes. A q-query locally decodable quantum code encodes n classical bits in an m-qubit state, in such a way that each of the encoded bits can be recovered with high probability by a measurement on at most q qubits of the quantum code, even if a constant fraction of its qubits have been corrupted adversarially. We show that such a quantum code can be transformed into a classical q-query locally decodable code of the same length that can be decoded well on average (albeit with smaller success probability and noise-tolerance). This shows, roughly speaking, that q-query quantum codes are not significantly better than q-query classical codes, at least for constant or small q.Comment: 15 pages, LaTe
    corecore