3,832 research outputs found

    An Alternative Approach to Functional Linear Partial Quantile Regression

    Full text link
    We have previously proposed the partial quantile regression (PQR) prediction procedure for functional linear model by using partial quantile covariance techniques and developed the simple partial quantile regression (SIMPQR) algorithm to efficiently extract PQR basis for estimating functional coefficients. However, although the PQR approach is considered as an attractive alternative to projections onto the principal component basis, there are certain limitations to uncovering the corresponding asymptotic properties mainly because of its iterative nature and the non-differentiability of the quantile loss function. In this article, we propose and implement an alternative formulation of partial quantile regression (APQR) for functional linear model by using block relaxation method and finite smoothing techniques. The proposed reformulation leads to insightful results and motivates new theory, demonstrating consistency and establishing convergence rates by applying advanced techniques from empirical process theory. Two simulations and two real data from ADHD-200 sample and ADNI are investigated to show the superiority of our proposed methods

    Optimal Rate of Direct Estimators in Systems of Ordinary Differential Equations Linear in Functions of the Parameters

    Get PDF
    Many processes in biology, chemistry, physics, medicine, and engineering are modeled by a system of differential equations. Such a system is usually characterized via unknown parameters and estimating their 'true' value is thus required. In this paper we focus on the quite common systems for which the derivatives of the states may be written as sums of products of a function of the states and a function of the parameters. For such a system linear in functions of the unknown parameters we present a necessary and sufficient condition for identifiability of the parameters. We develop an estimation approach that bypasses the heavy computational burden of numerical integration and avoids the estimation of system states derivatives, drawbacks from which many classic estimation methods suffer. We also suggest an experimental design for which smoothing can be circumvented. The optimal rate of the proposed estimators, i.e., their n\sqrt n-consistency, is proved and simulation results illustrate their excellent finite sample performance and compare it to other estimation approaches

    Statistical significance in high-dimensional linear models

    Full text link
    We propose a method for constructing p-values for general hypotheses in a high-dimensional linear model. The hypotheses can be local for testing a single regression parameter or they may be more global involving several up to all parameters. Furthermore, when considering many hypotheses, we show how to adjust for multiple testing taking dependence among the p-values into account. Our technique is based on Ridge estimation with an additional correction term due to a substantial projection bias in high dimensions. We prove strong error control for our p-values and provide sufficient conditions for detection: for the former, we do not make any assumption on the size of the true underlying regression coefficients while regarding the latter, our procedure might not be optimal in terms of power. We demonstrate the method in simulated examples and a real data application.Comment: Published in at http://dx.doi.org/10.3150/12-BEJSP11 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    emgr - The Empirical Gramian Framework

    Full text link
    System Gramian matrices are a well-known encoding for properties of input-output systems such as controllability, observability or minimality. These so-called system Gramians were developed in linear system theory for applications such as model order reduction of control systems. Empirical Gramian are an extension to the system Gramians for parametric and nonlinear systems as well as a data-driven method of computation. The empirical Gramian framework - emgr - implements the empirical Gramians in a uniform and configurable manner, with applications such as Gramian-based (nonlinear) model reduction, decentralized control, sensitivity analysis, parameter identification and combined state and parameter reduction
    • …
    corecore