1,026 research outputs found

    On the performance of 1-level LDPC lattices

    Full text link
    The low-density parity-check (LDPC) lattices perform very well in high dimensions under generalized min-sum iterative decoding algorithm. In this work we focus on 1-level LDPC lattices. We show that these lattices are the same as lattices constructed based on Construction A and low-density lattice-code (LDLC) lattices. In spite of having slightly lower coding gain, 1-level regular LDPC lattices have remarkable performances. The lower complexity nature of the decoding algorithm for these type of lattices allows us to run it for higher dimensions easily. Our simulation results show that a 1-level LDPC lattice of size 10000 can work as close as 1.1 dB at normalized error probability (NEP) of 10−510^{-5}.This can also be reported as 0.6 dB at symbol error rate (SER) of 10−510^{-5} with sum-product algorithm.Comment: 1 figure, submitted to IWCIT 201

    Decoding by Embedding: Correct Decoding Radius and DMT Optimality

    Get PDF
    The closest vector problem (CVP) and shortest (nonzero) vector problem (SVP) are the core algorithmic problems on Euclidean lattices. They are central to the applications of lattices in many problems of communications and cryptography. Kannan's \emph{embedding technique} is a powerful technique for solving the approximate CVP, yet its remarkable practical performance is not well understood. In this paper, the embedding technique is analyzed from a \emph{bounded distance decoding} (BDD) viewpoint. We present two complementary analyses of the embedding technique: We establish a reduction from BDD to Hermite SVP (via unique SVP), which can be used along with any Hermite SVP solver (including, among others, the Lenstra, Lenstra and Lov\'asz (LLL) algorithm), and show that, in the special case of LLL, it performs at least as well as Babai's nearest plane algorithm (LLL-aided SIC). The former analysis helps to explain the folklore practical observation that unique SVP is easier than standard approximate SVP. It is proven that when the LLL algorithm is employed, the embedding technique can solve the CVP provided that the noise norm is smaller than a decoding radius λ1/(2γ)\lambda_1/(2\gamma), where λ1\lambda_1 is the minimum distance of the lattice, and γ≈O(2n/4)\gamma \approx O(2^{n/4}). This substantially improves the previously best known correct decoding bound γ≈O(2n)\gamma \approx {O}(2^{n}). Focusing on the applications of BDD to decoding of multiple-input multiple-output (MIMO) systems, we also prove that BDD of the regularized lattice is optimal in terms of the diversity-multiplexing gain tradeoff (DMT), and propose practical variants of embedding decoding which require no knowledge of the minimum distance of the lattice and/or further improve the error performance.Comment: To appear in IEEE Transactions on Information Theor

    Algebraic Approach to Physical-Layer Network Coding

    Full text link
    The problem of designing physical-layer network coding (PNC) schemes via nested lattices is considered. Building on the compute-and-forward (C&F) relaying strategy of Nazer and Gastpar, who demonstrated its asymptotic gain using information-theoretic tools, an algebraic approach is taken to show its potential in practical, non-asymptotic, settings. A general framework is developed for studying nested-lattice-based PNC schemes---called lattice network coding (LNC) schemes for short---by making a direct connection between C&F and module theory. In particular, a generic LNC scheme is presented that makes no assumptions on the underlying nested lattice code. C&F is re-interpreted in this framework, and several generalized constructions of LNC schemes are given. The generic LNC scheme naturally leads to a linear network coding channel over modules, based on which non-coherent network coding can be achieved. Next, performance/complexity tradeoffs of LNC schemes are studied, with a particular focus on hypercube-shaped LNC schemes. The error probability of this class of LNC schemes is largely determined by the minimum inter-coset distances of the underlying nested lattice code. Several illustrative hypercube-shaped LNC schemes are designed based on Construction A and D, showing that nominal coding gains of 3 to 7.5 dB can be obtained with reasonable decoding complexity. Finally, the possibility of decoding multiple linear combinations is considered and related to the shortest independent vectors problem. A notion of dominant solutions is developed together with a suitable lattice-reduction-based algorithm.Comment: Submitted to IEEE Transactions on Information Theory, July 21, 2011. Revised version submitted Sept. 17, 2012. Final version submitted July 3, 201
    • …
    corecore