6 research outputs found

    Generalized homogeneous, prelattice and MV-effect algebras

    Get PDF
    summary:We study unbounded versions of effect algebras. We show a necessary and sufficient condition, when lattice operations of a such generalized effect algebra PP are inherited under its embeding as a proper ideal with a special property and closed under the effect sum into an effect algebra. Further we introduce conditions for a generalized homogeneous, prelattice or MV-effect effect algebras. We prove that every prelattice generalized effect algebra PP is a union of generalized MV-effect algebras and every generalized homogeneous effect algebra is a union of its maximal sub-generalized effect algebras with hereditary Riesz decomposition property (blocks). Properties of sharp elements, the center and center of compatibility of PP are shown. We prove that on every generalized MV-effect algebra there is a bounded orthogonally additive measure

    MAXIMAL SUBSETS OF PAIRWISE SUMMABLE ELEMENTS IN GENERALIZED EFFECT ALGEBRAS

    Get PDF
    We show that in any generalized effect algebra (G;⊕, 0) a maximal pairwise summable subset is a sub-generalized effect algebra of (G;⊕, 0), called a summability block. If G is lattice ordered, then every summability block in G is a generalized MV-effect algebra. Moreover, if every element of G has an infinite isotropic index, then G is covered by its summability blocks, which are generalized MV-effect algebras in the case that G is lattice ordered. We also present the relations between summability blocks and compatibility blocks of G. Counterexamples, to obtain the required contradictions in some cases, are given

    MAXIMAL SUBSETS OF PAIRWISE SUMMABLE ELEMENTS IN GENERALIZED EFFECT ALGEBRAS

    Get PDF
    We show that in any generalized effect algebra (G;⊕, 0) a maximal pairwise summable subset is a sub-generalized effect algebra of (G;⊕, 0), called a summability block. If G is lattice ordered, then every summability block in G is a generalized MV-effect algebra. Moreover, if every element of G has an infinite isotropic index, then G is covered by its summability blocks, which are generalized MV-effect algebras in the case that G is lattice ordered. We also present the relations between summability blocks and compatibility blocks of G. Counterexamples, to obtain the required contradictions in some cases, are given
    corecore