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Abstract. We show that in any generalized effect algebra (G;⊕, 0) a maximal pairwise summable
subset is a sub-generalized effect algebra of (G;⊕, 0), called a summability block. If G is lattice
ordered, then every summability block in G is a generalized MV-effect algebra. Moreover, if every
element of G has an infinite isotropic index, then G is covered by its summability blocks, which are
generalized MV-effect algebras in the case that G is lattice ordered. We also present the relations
between summability blocks and compatibility blocks of G. Counterexamples, to obtain the required
contradictions in some cases, are given.
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1. Introduction and some basic
definitions

In a Hilbert space formalization of quantum mechan-
ics, G. Birkhoff and J. von Neumann proposed the
concept of quantum logics (in 1936 the concept of
modular ortholattices and later orthomodular lattices,
discovered by Husimi in 1937). Nevertheless, in the set
P(H) of all projection operators in a separable Hilbert
space (used as a model for orthomodular lattices) every
event satisfies the non-contradiction principle. Thus
the set P(H) is not the set of all possible events in
quantum theory. In 1994, D. Foulis introduced al-
gebraic structures called effect algebras. Equivalent
structures, in some sense, are D-posets introduced
by Kôpka and Chovanec in 1994. The prototype for
the axiomatic system of effect algebras was the set
E(H) of all positive linear operators dominated by the
identity operator in a Hilbert space. Events in E(H),
called effects, do not satisfy the non-contradiction law
(meaning that there exist unsharp events x and non
x which are not disjoint). They represent unsharp
measurements or observations on a quantum mechan-
ical system in a Hilbert space H. Moreover, a special
kind of effect algebras are MV-algebras, which are al-
gebraic bases for multivalued logic, as a generalization
of Boolean algebras. Effect algebras are very suitable
algebraic structures for being carriers of probability
measures when events may be unsharp or pairwise
non-compatible.

The mutually equivalent generalizations (unbound-
ed version) of effect algebras were introduced in 1994
by several authors — D. Foulis and M.K. Bennett,

G. Kalmbach and Z. Riečanová, J. Hedlíková and
S. Pulmannová, and F. Kôpka and F. Chovanec. On
the other hand, all intervals in these generalized effect
algebras are effect algebras.

Recently, operator representations of abstract effect
algebras (i.e. their isomorphism with sub-effect alge-
bras of the standard effect algebra E(H) mentioned
above) have been studied. It was proved in [14] that
the set VD(H) of all positive linear operators in an
infinite-dimensional complex Hilbert space H with
partially defined sum of operators (which coincides
with the usual sum) restricted to the common do-
mains of operators forms a generalized effect algebra.
This generalized effect algebra VD(H) is a union of
sub-generalized effect algebras of maximal subsets of
pairwise summable operators. Moreover, all intervals
are effect algebras isomorphic to sub-effect algebras
of the standard effect algebra E(H) for some Hilbert
space H (see [13]).
We are going to show that in a generalized effect

algebra G without elements with finite isotropic in-
dexes (which corresponds to the operator case) its
maximal subsets of pairwise summable elements are
sub-generalized effect algebras. Moreover, such G is
covered by those sub-generalized effect algebras.

Definition 1 ([3]). A partial algebra (E;⊕, 0, 1) is
called an effect algebra if 0, 1 ∈ E are two distinguished
elements and ⊕ is a partially defined binary operation
on E which satisfies the following conditions for any
x, y, z ∈ E:

(Ei) x⊕ y = y ⊕ x if x⊕ y is defined,
(Eii) (x⊕y)⊕ z = x⊕ (y⊕ z) if one side is defined,
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(Eiii) for every x ∈ E there exists a unique y ∈ E
such that x⊕ y = 1 (we put x′ = y),

(Eiv) if 1⊕ x is defined then x = 0.

The basic references for the present text are the
books by Dvurečenskij and Pulmannová [2], and
Blank, Exner and Havlíček [1], where unexplained
terms and notations concerning the subject can be
found.

In 1994 also a generalization of effect algebras with-
out a top element was introduced by several authors
([3, 5, 6, 8]).

Definition 2. A partial algebra (E;⊕, 0) is called a
generalized effect algebra if 0 ∈ E is a distinguished
element and ⊕ is a partially defined binary operation
on E which satisfies the following conditions for any
x, y, z ∈ E:

(GEi) x⊕ y = y ⊕ x, if one side is defined,
(GEii) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z), if one side is
defined,

(GEiii) x⊕ 0 = x,
(GEiv) x ⊕ y = x ⊕ z implies y = z (cancellation
law),

(GEv) x⊕ y = 0 implies x = y = 0.

In every (generalized) effect algebra E relation ≤
and the partial binary operation 	 can be defined by
(PO) x ≤ y iff there exists z ∈ E such that x⊕z = y.

In that case, such element z is unique and we set
z = y 	 x.

Then ≤ is a partial order on E under which 0 is the
least element of E.
A generalized effect algebra (E;⊕, 0) is called a

lattice generalized effect algebra if E with respect to
induced partial order ≤ is a lattice.

Definition 3. Let (E;⊕, 0, 1) be an effect algebra
((E;⊕, 0) be a generalized effect algebra). A subset
Q ⊆ E is called a sub-effect algebra (sub-generalized
effect algebra) of E iff

(Si) 1 ∈ Q (0 ∈ Q),
(Sii) if a, b, c ∈ Q with a ⊕ b = c and out of a, b, c
at least two elements are in Q then a, b, c ∈ Q.

Let (E;⊕, 0, 1) be an effect algebra and F ⊆ E, by
the symbol ⊕/F we will denote a restriction of ⊕ to
F , i.e. for a, b ∈ F , a ⊕/F b is defined if and only if
a⊕ b is defined and a⊕/F b = a⊕ b.
It is easy to see that sub-effect algebra (sub-

generalized effect algebra) Q of (E;⊕, 0, 1) ((E;⊕, 0))
is an effect algebra (Q;⊕/Q, 0, 1) (generalized effect
algebra (Q;⊕/Q, 0)) in its own right.

Definition 4. Let (E;⊕, 0) be a generalized effect
algebra. For any x ∈ E, if there exists a natural
number ord(x) ∈ N such that ord(x)·x = x⊕x⊕. . .⊕x
(ord(x)-times) is defined, but (ord(x) + 1) · x is not

defined, is called an isotropic index of x. If such
natural number does not exist, we set ord(x) =∞.

Definition 5. Elements a, b ∈ E of an effect alge-
bra (E;⊕, 0, 1) (generalized effect algebra (E;⊕, 0))
are called compatible (we write a ↔ b) if there ex-
ist a1, c, b1 ∈ E such that a1 ⊕ c ⊕ b1 is defined and
a = a1 ⊕ c, b = b1 ⊕ c.

In [11] it was proved that in any lattice effect algebra
E for a, b ∈ E we have a↔ b iff (a	 (a ∧ b))⊕ (b	
(a ∧ b)) is defined in E. Moreover, we call every
maximal subset of pairwise compatible elements of E
a compatibility block of E. Every lattice effect algebra
E is a set-theoretical union of its compatibility blocks
[10, Theorem 3.2]. A lattice effect algebra possessing
a unique block is called an MV-effect algebra (hence
a↔ b for all a, b ∈ E).

2. Pairwise summable generalized
effect algebras

Recall that elements a, b of a generalized effect algebra
(G;⊕, 0) are called summable if a⊕ b exists in G.

A nonempty subset F of a generalized effect algebra
(G;⊕, 0) is called a pairwise summable subset of G if
a⊕ b exists for every not necessarily different elements
a, b ∈ F and a⊕ b ∈ F (hence F is closed under the
partial operation ⊕). Evidently, in this case, every
a ∈ F has the infinite isotropic index ord(a) =∞.

A (sub-) generalized effect algebra E of (G;⊕, 0) is
called pairwise summable if it is a pairwise summable
subset of G.
We are going to show that every maximal subset

of pairwise summable elements of a generalized ef-
fect algebra G is a sub-generalized effect algebra of
G. Moreover, we study further properties of these
pairwise summable sub-generalized effect algebras.

Theorem 1. Let (G;⊕, 0) be a generalized effect
algebra. Let a non-empty subset F of G satisfy the
following conditions:
(1.) For every a, b ∈ F there exists a⊕ b ∈ F ,
(2.) If a ∈ G and a ⊕ e exists for every e ∈ F then

a ∈ F .

Then F is a sub-generalized effect algebra of G.

Proof. By (2.) we obtain 0 ∈ F , since 0⊕ e exists for
all e ∈ F .
Suppose now that a ⊕ b = c, for a, b, c ∈ G. If

a, b ∈ F then c = a ⊕ b ∈ F by (1.). Further, in the
case a, c ∈ F , we have b = c 	 a ≤ c. Since c ⊕ e
exists for all e ∈ F , also b = (c	 a)⊕ e exists for all
e ∈ F . Thus by (2.) b = c 	 a ∈ F . That is, F is a
sub-generalized effect algebra of (G;⊕, 0).

Remark 1. Condition (1.) on a subset F ⊆ G of
a generalized effect algebra (G;⊕, 0) in the above
theorem guarantees that F is a pairwise summable
subset of G. Condition (2.) then provides that F is a
maximal pairwise summable subset of G.
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Definition 6. Let (G;⊕, 0) be a generalized effect
algebra and F ⊆ G be a subset of G that satisfies
conditions (1.) and (2.) from Theorem 1. Then F is
called a summability block of G.

Corollary 1. Every maximal pairwise summable sub-
set F ⊆ G (a summability block) of elements of any
generalized effect algebra (G;⊕, 0) is a sub-generalized
effect algebra of G.

Example 1. Let H be an infinite-dimensional com-
plex Hilbert space and

D = {D ⊆ H | D is a dense sub-space of H}.

Let VD(H) ={
A : D(A)→ H

∣∣ (Ax, x) ≥ 0 for all x ∈ D(A),
D(A) ∈ D, D(A) = H if A is bounded

}
be a set of densely defined positive linear operators on
H. In [14] it was shown that VD(H) with the partial bi-
nary operation ⊕D defined for every A, B ∈ VD(H) by
A⊕DB = A+B (the usual sum) if A or B is bounded
or D(A) = D(B) if A, B are both unbounded, forms a
generalized effect algebra (VD(H);⊕D, 0). Moreover,
for every D ∈ D the set

GD(H) =
{
A ∈ VD(H)

∣∣ A is bounded,
or D(A) = D

}
is a sub-generalized effect algebra of VD(H) (see [14]).
For every A, B ∈ GD(H), D ∈ D by definition of
⊕ the condition (1.) is satisfied. Let us assume that
there exists C ∈ VD(H) such that C⊕A is defined for
all A ∈ GD(H). Further, there exists some B ∈ GD(H)
with D(B) = D 6= H (if not, then D = H), hence
by the Hellinger-Toeplitz theorem B is unbounded.
Since C ⊕ B is defined we have D(C) = D(B), that
is C ∈ GD(H). Therefore sets GD(H) are for D 6= H
maximal pairwise summable sub-generalized effect
algebras.

Example 2. According to [1], every positive linear
operator A ∈ VD(H) uniquely determines a positive
sesquilinear form tA on D(tA) = D(A) by tA(x, y) =
(Ax, y). Let us denote a set of all such sesquilinear
forms by FD(H), namely

FD(H) =
{

t : D(t)×D(t)→ H
∣∣

there exists A ∈ VD(H) with D(A) = D(t)
and t(x, y) = (Ax, y) for all x, y ∈ D(t)

}
.

On the set FD(H), we can define a partial sum t⊕ s
for any t, s ∈ FD(H) in the following way: t ⊕ s
exists whenever D(t) = D(s) or t or s is bounded
(then D(t ⊕ s) = D(t) ∩ D(s)) by (t ⊕ s)(x, y) =
t(x, y) + s(x, y) for all x, y ∈ D(t)∩D(s). It is easy to
show that (FD(H);⊕, 0) is a generalized effect algebra
isomorphic to (VD(H);⊕D, 0).

As in the previous example, maximal pairwise
summable subsets are

MD(H) =
{

t ∈ F(H)
∣∣ t is bounded, or D(t) = D

}
,

hence they are sub-generalized effect algebras of
FD(H).

Example 3. Let us consider Chang’s effect al-
gebra (E;⊕, 0, 1) which is defined by E = {0,
a, 2a, . . . , (2a)′

, a
′
, 1}. Consider its subset F =

{0, a, 2a, . . . } ⊆ G. Clearly F satisfies condition (1.).
Since any element of the form (n0a)′ is summable only
with elements na for n ≤ n0, hence (n0a)′

/∈ F which
gives that (2.) is satisfied as well.

3. Intervals in pairwise summable
generalized effect algebras

The significant property of any generalized effect al-
gebra (G;⊕, 0, q) is the fact that for every non-zero
element q ∈ G, the interval

[0, q]G = {a ∈ G | there exists c ∈ G with a⊕ c = q}

is an effect algebra ([0, q]G;⊕q, 0). The partial oper-
ation ⊕q is defined by a⊕q b exists iff a⊕ b ≤ q and
then a⊕q b = a⊕ b. Further, let us investigate inter-
vals in pairwise summable generalized effect algebras.
Namely, we are going to show that if G with derived ≤
is a lattice, then these intervals are MV-effect algebras
(hence can be organized into MV-algebras). We start
with the observation that every pairwise summable
generalized effect algebra (G;⊕, 0) is a generalized
MV-effect algebra if and only if (G,≤) is a lattice.
Recall that a non-void subset I ⊆ L of a partially

ordered set (L,≤) is an order ideal if a ∈ L, b ∈ I and
a ≤ b implies a ∈ I.
Let (P ;≤, 0) be a generalized effect algebra. Let

P ∗ be a set disjoint from P with the same cardinality.
Consider a bijection a → a∗ from P onto P ∗ and
let us denote P ∪̇P ∗ by E. Further define a partial
binary operation ⊕∗ on E by the following rules. For
a, b ∈ P

(1.) a ⊕∗ b is defined if and only if a ⊕ b is defined,
and a⊕∗ b = a⊕ b,

(2.) b∗⊕∗ a and a⊕∗ b∗ are defined if and only if b	a
is defined and then b∗ ⊕∗ a = (b	 a)∗ = a⊕∗ b∗.

Theorem 2 ([2, p. 18]). For every generalized effect
algebra P and E = P ∪̇P ∗ the structure (E;⊕∗, 0, 0∗)
is an effect algebra. Moreover, P is a proper order ideal
in E closed under ⊕∗ and the partial order induced by
⊕∗, when restricted to P , coincides with the partial
order induced by ⊕. The generalized effect algebra P
is a sub-generalized effect algebra of E and for every
a ∈ P, a⊕ a∗ = 0∗.

Since the definition of ⊕∗ on E = P ∪̇P ∗ coincides
with the ⊕-operation on P , it will cause no confusion
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0

a

a⊕ c

c b

b⊕ c

Figure 1. To Example 4: (G;⊕, 0)

if from now on we use the notation ⊕ also for its
extension to E.

To avoid undue repetitions on generalized MV-effect
algebras, we recall the following statements from [11],
giving their equivalent definitions.

Theorem 3 ([11, Theorem 3.2]). For a generalized
effect algebra P the following conditions are equiva-
lent:
(1.) P is a generalized MV-effect algebra,
(2.) E = P ∪̇P ∗ is an MV-effect algebra.

Theorem 4 ([11, Theorem 3.3]). A generalized
effect algebra P is a generalized MV-effect algebra iff
the following conditions are satisfied

(1.) P is a lattice,
(2.) for all a, b, c ∈ P the existence of a⊕ c and b⊕ c
implies the existence of (a ∨P b)⊕ c,

(3.)
∨
{c ∈ P | a⊕ c exists and c ≤ b} exists in P , for

all a, b ∈ P ,
(4.) (a	(a∧P b))⊕(b	(a∧P b)) exists for all a, b ∈ P .

Lemma 1. Let (G;⊕, 0) be a generalized MV-effect
algebra. Then for every q ∈ G the interval [0, q]G ⊆ G
is an MV-effect algebra.

Proof. Clearly, for every q ∈ G, the interval [0, q]G ⊆
G is lattice ordered, as for every a, b ∈ [0, q]G we have
a ∨G b, a ∧G b ≤ q in G.
Moreover, for every a, b ∈ [0, q]G ⊆ G we have

(a	(a∧G b))⊕(b	(a∧G b)) exists in G by Theorem 4.
Since (a	(a∧G b))⊕(b	(a∧G b)) = [(a	(a∧G b))∨G

(b	 (a ∧G b))]⊕ [(a	 (a ∧G b)) ∧G (b	 (a ∧G b))] =
(a	 (a ∧G b)) ∨G (b	 (a ∧G b)) ≤ a ∨G b ≤ q we have
that (a 	q (a ∧q b)) ⊕q (b 	q (a ∧q b)) also exists in
[0, q]G (for inequalities see [2, p. 70]). This proves
that a, b are compatible elements of a lattice effect
algebra ([0, q]G;⊕q, 0, q). Hence ([0, q]G;⊕q, 0, q) is an
MV-effect algebra.

The converse of this lemma, in general, does not
hold as can be seen in the following example.

Example 4. Let us have a generalized effect algebra
(G;⊕, 0) given by G = {0, a, b, a ⊕ c, b ⊕ c} (Fig. 1).
Consider E = G ∪̇G∗ (Fig. 2).

(1.) Clearly, a is not compatible with b. This is be-
cause a ↔ b if and only if there exists (a 	 (a ∧G

b))⊕ (b	 (a ∧G b)) = a⊕ b which is not defined.

0

a

a⊕ c

c b

b⊕ c

0∗

a∗

(a⊕ c)∗

c∗ b∗

(b⊕ c)∗

Figure 2. To Example 4: E = G ∪̇G∗

(2.) E = G ∪̇G∗ is a lattice.
(3.) G is a prelattice generalized effect algebra but it
is not a generalized MV-effect algebra, since E =
G ∪̇G∗ is not an MV-effect algebra.

(4.) Every interval of G is an MV-effect algebra,
namely [0, a⊕c], [0, b⊕c] are Boolean algebras which
are MV-effect algebras, and [0, a], [0, b] and [0, c] are
finite chains, which are MV-effect algebras as well.
Nevertheless, G is not a generalized MV-effect alge-
bra since E = G ∪̇G∗ is not an MV-effect algebra.

Using previous theorems we obtain statements for
pairwise summable lattice ordered generalized effect
algebras.

Theorem 5. Let (G;⊕, 0) be a pairwise summable
lattice ordered generalized effect algebra. Then
(1.) (G;⊕, 0) is a generalized MV-effect algebra,
(2.) E = G ∪̇G∗ is an MV-effect algebra,
(3.) For every q ∈ G the interval [0, q]G ⊆ G is an
MV-effect algebra.

Proof. Since G with derived partial order ≤ is a lat-
tice and every pair of elements of G is summable, G
satisfies all conditions (1.)–(4.) of Theorem 4. Fur-
ther (2.) follows by Theorem 3 and (3.) by (1.) and
Lemma 1.

4. Blocks of pairwise summable
elements in generalized effect
algebras

In [10] it was shown that every lattice effect algebra is a
set theoretical union of blocks of compatible elements.
In this section we present an analogous statement for
blocks of pairwise summable elements in generalized
effect algebras.
Let (P,≤) be a poset (e.g. generalized effect alge-

bra). We call (P,≤) inductive if every chain in P has
an upper bound.

460



vol. 53 no. 5/2013 Maximal Subsets of Pairwise Summable Elements

Theorem 6. Let (G;⊕, 0) be a generalized effect
algebra such that for every element a ∈ G, its isotropic
index ord(a) =∞. Then G is a set-theoretical union
of its summability blocks, which are sub-generalized
effect algebras of G.

Proof. Let A ⊆ G be a non-empty set of pairwise
summable elements (i.e., a⊕b exists for every a, b ∈ A)
and let A = {B ⊆ G | A ⊆ B, B is a set of pairwise
summable elements}. Then for every chain B ⊆ A
(i.e., for X, Y ∈ B we have either X ⊆ Y or Y ⊆ X)
we show that

⋃
B ∈ A. Let us have x, y ∈

⋃
B. Then

there exist Bx, By such that x ∈ Bx, y ∈ By. By
assumptions Bx ⊆ By or By ⊆ Bx, hence x, y ∈ Bx

or x, y ∈ By i.e. x⊕ y exists.
Therefore

⋃
B ∈ A hence A is inductive. Thus a

maximal element M by Zorn’s Lemma exists in A and
M is clearly a summability block of G.
For every a ∈ G, a 6= 0 there exists a pairwise

summable subset A = {0, a, 2a, . . . } ∈ G. By previ-
ous a subset A ⊆ G is contained in some summability
block M . Thus G is a set-theoretical union of summa-
bility blocks M . Blocks are sub-generalized effect
algebras by Theorem 1 (resp. Corollary 1).

Hence any generalized effect algebra without ele-
ments with finite isotropic index (G;⊕, 0) is covered
by its summability blocks.

Example 5. We now turn to Example 1. Let H be
an infinite-dimensional complex Hilbert space. Con-
sider a generalized effect algebra VD(H) and its sub-
generalized effect algebras GD(H) from Example 1.
Then for any D ∈ D, D 6= H, GD(H) forms a summa-
bility block of VD(H). Note that sub-generalized effect
algebras GD(H) are also compatibility blocks (see [14],
hence in this case, compatibility and summability
blocks coincide.

Theorem 7. Let (G;⊕, 0) be a lattice generalized
effect algebra such that for every element a ∈ G,
its isotropic index ord(a) = ∞. Then G is a
set-theoretical union of its blocks, which are sub-
generalized effect algebras of G and generalized MV-
effect algebras in its own right.

Proof. This follows from Theorems 5 and 6.

Corollary 2. For every maximal pairwise summable
subset F of a lattice ordered generalized effect algebra
(G;⊕, 0) and any q ∈ G, q 6= 0 the intervals [0, q]F =
[0, q]G ∩ F are MV-effect algebras in its own right.

Proof. The identical mapping ϕ : [0, q]G → [0, q]G
restricted to [0, q]F = [0, q]G ∩ F is an embedding of
[0, q]F into [0, q]G. Thus if G is a lattice ordered gen-
eralized effect algebra, then [0, q]G ∩ F is a sub-effect
algebra of [0, q]G (see [7, Section 3]) and consequently
it is an MV-effect algebra in its own right.

Example 6. Consider Chang’s effect algebra (G;⊕, 0)
mentioned in Example 3. It is not covered by summa-
bility blocks since it has elements with finite isotropic

index. There exists only one summability block
F = {0, a, 2a, . . . } ⊆ G. On the other hand, since
G is linearly ordered by induced partial order ≤, all of
its elements are pairwise compatible, hence the only
compatibility block is G itself (G is an MV-effect al-
gebra). That is compatibility and summability blocks
need not coincide.
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