322 research outputs found

    Generalized Budgeted Submodular Set Function Maximization

    Get PDF
    In this paper we consider a generalization of the well-known budgeted maximum coverage problem. We are given a ground set of elements and a set of bins. The goal is to find a subset of elements along with an associated set of bins, such that the overall cost is at most a given budget, and the profit is maximized. Each bin has its own cost and the cost of each element depends on its associated bin. The profit is measured by a monotone submodular function over the elements. We first present an algorithm that guarantees an approximation factor of 1/2(1-1/e^alpha), where alpha <= 1 is the approximation factor of an algorithm for a sub-problem. We give two polynomial-time algorithms to solve this sub-problem. The first one gives us alpha=1- epsilon if the costs satisfies a specific condition, which is fulfilled in several relevant cases, including the unitary costs case and the problem of maximizing a monotone submodular function under a knapsack constraint. The second one guarantees alpha=1-1/e-epsilon for the general case. The gap between our approximation guarantees and the known inapproximability bounds is 1/2. We extend our algorithm to a bi-criterion approximation algorithm in which we are allowed to spend an extra budget up to a factor beta >= 1 to guarantee a 1/2(1-1/e^(alpha beta))-approximation. If we set beta=1/(alpha)ln (1/(2 epsilon)), the algorithm achieves an approximation factor of 1/2-epsilon, for any arbitrarily small epsilon>0

    Budget Feasible Mechanisms for Experimental Design

    Full text link
    In the classical experimental design setting, an experimenter E has access to a population of nn potential experiment subjects i{1,...,n}i\in \{1,...,n\}, each associated with a vector of features xiRdx_i\in R^d. Conducting an experiment with subject ii reveals an unknown value yiRy_i\in R to E. E typically assumes some hypothetical relationship between xix_i's and yiy_i's, e.g., yiβxiy_i \approx \beta x_i, and estimates β\beta from experiments, e.g., through linear regression. As a proxy for various practical constraints, E may select only a subset of subjects on which to conduct the experiment. We initiate the study of budgeted mechanisms for experimental design. In this setting, E has a budget BB. Each subject ii declares an associated cost ci>0c_i >0 to be part of the experiment, and must be paid at least her cost. In particular, the Experimental Design Problem (EDP) is to find a set SS of subjects for the experiment that maximizes V(S) = \log\det(I_d+\sum_{i\in S}x_i\T{x_i}) under the constraint iSciB\sum_{i\in S}c_i\leq B; our objective function corresponds to the information gain in parameter β\beta that is learned through linear regression methods, and is related to the so-called DD-optimality criterion. Further, the subjects are strategic and may lie about their costs. We present a deterministic, polynomial time, budget feasible mechanism scheme, that is approximately truthful and yields a constant factor approximation to EDP. In particular, for any small δ>0\delta > 0 and ϵ>0\epsilon > 0, we can construct a (12.98, ϵ\epsilon)-approximate mechanism that is δ\delta-truthful and runs in polynomial time in both nn and loglogBϵδ\log\log\frac{B}{\epsilon\delta}. We also establish that no truthful, budget-feasible algorithms is possible within a factor 2 approximation, and show how to generalize our approach to a wide class of learning problems, beyond linear regression

    Submodular Optimization with Contention Resolution Extensions

    Get PDF
    This paper considers optimizing a submodular function subject to a set of downward closed constraints. Previous literature on this problem has often constructed solutions by (1) discovering a fractional solution to the multi-linear extension and (2) rounding this solution to an integral solution via a contention resolution scheme. This line of research has improved results by either optimizing (1) or (2). Diverging from previous work, this paper introduces a principled method called contention resolution extensions of submodular functions. A contention resolution extension combines the contention resolution scheme into a continuous extension of a discrete submodular function. The contention resolution extension can be defined from effectively any contention resolution scheme. In the case where there is a loss in both (1) and (2), by optimizing them together, the losses can be combined resulting in an overall improvement. This paper showcases the concept by demonstrating that for the problem of optimizing a non-monotone submodular subject to the elements forming an independent set in an interval graph, the algorithm gives a .188-approximation. This improves upon the best known 1/(2e)~eq .1839 approximation

    Generalized Assignment via Submodular Optimization with Reserved Capacity

    Get PDF
    We study a variant of the generalized assignment problem (GAP) with group constraints. An instance of (Group GAP) is a set I of items, partitioned into L groups, and a set of m uniform (unit-sized) bins. Each item i in I has a size s_i >0, and a profit p_{i,j} >= 0 if packed in bin j. A group of items is satisfied if all of its items are packed. The goal is to find a feasible packing of a subset of the items in the bins such that the total profit from satisfied groups is maximized. We point to central applications of Group GAP in Video-on-Demand services, mobile Device-to-Device network caching and base station cooperation in 5G networks. Our main result is a 1/6-approximation algorithm for Group GAP instances where the total size of each group is at most m/2. At the heart of our algorithm lies an interesting derivation of a submodular function from the classic LP formulation of GAP, which facilitates the construction of a high profit solution utilizing at most half the total bin capacity, while the other half is reserved for later use. In particular, we give an algorithm for submodular maximization subject to a knapsack constraint, which finds a solution of profit at least 1/3 of the optimum, using at most half the knapsack capacity, under mild restrictions on element sizes. Our novel approach of submodular optimization subject to a knapsack with reserved capacity constraint may find applications in solving other group assignment problems
    corecore