991,674 research outputs found
Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models
Penalization of the likelihood by Jeffreys' invariant prior, or by a positive
power thereof, is shown to produce finite-valued maximum penalized likelihood
estimates in a broad class of binomial generalized linear models. The class of
models includes logistic regression, where the Jeffreys-prior penalty is known
additionally to reduce the asymptotic bias of the maximum likelihood estimator;
and also models with other commonly used link functions such as probit and
log-log. Shrinkage towards equiprobability across observations, relative to the
maximum likelihood estimator, is established theoretically and is studied
through illustrative examples. Some implications of finiteness and shrinkage
for inference are discussed, particularly when inference is based on Wald-type
procedures. A widely applicable procedure is developed for computation of
maximum penalized likelihood estimates, by using repeated maximum likelihood
fits with iteratively adjusted binomial responses and totals. These theoretical
results and methods underpin the increasingly widespread use of reduced-bias
and similarly penalized binomial regression models in many applied fields
Generalized Perceptual Linear Prediction (gPLP) Features for Animal Vocalization Analysis
A new feature extraction model, generalized perceptual linear prediction (gPLP), is developed to calculate a set of perceptually relevant features for digital signal analysis of animalvocalizations. The gPLP model is a generalized adaptation of the perceptual linear prediction model, popular in human speech processing, which incorporates perceptual information such as frequency warping and equal loudness normalization into the feature extraction process. Since such perceptual information is available for a number of animal species, this new approach integrates that information into a generalized model to extract perceptually relevant features for a particular species. To illustrate, qualitative and quantitative comparisons are made between the species-specific model, generalized perceptual linear prediction (gPLP), and the original PLP model using a set of vocalizations collected from captive African elephants (Loxodonta africana) and wild beluga whales (Delphinapterus leucas). The models that incorporate perceptional information outperform the original human-based models in both visualization and classification tasks
Generalized linear mixing model accounting for endmember variability
Endmember variability is an important factor for accurately unveiling vital
information relating the pure materials and their distribution in hyperspectral
images. Recently, the extended linear mixing model (ELMM) has been proposed as
a modification of the linear mixing model (LMM) to consider endmember
variability effects resulting mainly from illumination changes. In this paper,
we further generalize the ELMM leading to a new model (GLMM) to account for
more complex spectral distortions where different wavelength intervals can be
affected unevenly. We also extend the existing methodology to jointly estimate
the variability and the abundances for the GLMM. Simulations with real and
synthetic data show that the unmixing process can benefit from the extra
flexibility introduced by the GLMM
A Note on the Identifiability of Generalized Linear Mixed Models
I present here a simple proof that, under general regularity conditions, the
standard parametrization of generalized linear mixed model is identifiable. The
proof is based on the assumptions of generalized linear mixed models on the
first and second order moments and some general mild regularity conditions,
and, therefore, is extensible to quasi-likelihood based generalized linear
models. In particular, binomial and Poisson mixed models with dispersion
parameter are identifiable when equipped with the standard parametrization.Comment: 9 pages, no figure
Properties of linear integral equations related to the six-vertex model with disorder parameter
One of the key steps in recent work on the correlation functions of the XXZ
chain was to regularize the underlying six-vertex model by a disorder parameter
. For the regularized model it was shown that all static correlation
functions are polynomials in only two functions. It was further shown that
these two functions can be written as contour integrals involving the solutions
of a certain type of linear and non-linear integral equations. The linear
integral equations depend parametrically on and generalize linear
integral equations known from the study of the bulk thermodynamic properties of
the model. In this note we consider the generalized dressed charge and a
generalized magnetization density. We express the generalized dressed charge as
a linear combination of two quotients of -functions, the solutions of
Baxter's --equation. With this result we give a new proof of a lemma on
the asymptotics of the generalized magnetization density as a function of the
spectral parameter.Comment: 10 pages, latex, needs ws-procs9x6.cls, dedicated to Prof. Tetsuji
Miwa on the occasion of his 60th birthday; v2 minor correction
Vector Approximate Message Passing for the Generalized Linear Model
The generalized linear model (GLM), where a random vector is
observed through a noisy, possibly nonlinear, function of a linear transform
output , arises in a range of applications such
as robust regression, binary classification, quantized compressed sensing,
phase retrieval, photon-limited imaging, and inference from neural spike
trains. When is large and i.i.d. Gaussian, the generalized
approximate message passing (GAMP) algorithm is an efficient means of MAP or
marginal inference, and its performance can be rigorously characterized by a
scalar state evolution. For general , though, GAMP can
misbehave. Damping and sequential-updating help to robustify GAMP, but their
effects are limited. Recently, a "vector AMP" (VAMP) algorithm was proposed for
additive white Gaussian noise channels. VAMP extends AMP's guarantees from
i.i.d. Gaussian to the larger class of rotationally invariant
. In this paper, we show how VAMP can be extended to the GLM.
Numerical experiments show that the proposed GLM-VAMP is much more robust to
ill-conditioning in than damped GAMP
- …