2,162 research outputs found

    Brownian markets

    Full text link
    Financial market dynamics is rigorously studied via the exact generalized Langevin equation. Assuming market Brownian self-similarity, the market return rate memory and autocorrelation functions are derived, which exhibit an oscillatory-decaying behavior with a long-time tail, similar to empirical observations. Individual stocks are also described via the generalized Langevin equation. They are classified by their relation to the market memory as heavy, neutral and light stocks, possessing different kinds of autocorrelation functions

    On the "generalized Generalized Langevin Equation"

    Full text link
    In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble ("bundle") of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. In contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation, but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows to relate the Taylor expansion of the memory kernel to data that is accessible in MD simulations and experiments, thus allowing to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions, and is shown to be consistent with direct measurements from simulations

    Mode-coupling theory of sheared dense granular liquids

    Full text link
    Mode-coupling theory (MCT) of sheared dense granular liquids %in the vicinity of jamming transition is formulated. Starting from the Liouville equation of granular particles, the generalized Langevin equation is derived with the aid of the projection operator technique. The MCT equation for the density correlation function obtained from the generalized Langevin equation is almost equivalent to MCT equation for elastic particles under the shear. It is found that there should be the plateau in the density correlation function.Comment: 22 pages, 2 figure. to be published in Progress of Theoretical Physics. to be published in Progress of Theoretical Physic

    Equilibration problem for the generalized Langevin equation

    Get PDF
    We consider the problem of equilibration of a single oscillator system with dynamics given by the generalized Langevin equation. It is well-known that this dynamics can be obtained if one considers a model where the single oscillator is coupled to an infinite bath of harmonic oscillators which are initially in equilibrium. Using this equivalence we first determine the conditions necessary for equilibration for the case when the system potential is harmonic. We then give an example with a particular bath where we show that, even for parameter values where the harmonic case always equilibrates, with any finite amount of nonlinearity the system does not equilibrate for arbitrary initial conditions. We understand this as a consequence of the formation of nonlinear localized excitations similar to the discrete breather modes in nonlinear lattices.Comment: 5 pages, 2 figure

    Asymptotic analysis for the generalized langevin equation

    Full text link
    Various qualitative properties of solutions to the generalized Langevin equation (GLE) in a periodic or a confining potential are studied in this paper. We consider a class of quasi-Markovian GLEs, similar to the model that was introduced in \cite{EPR99}. Geometric ergodicity, a homogenization theorem (invariance principle), short time asymptotics and the white noise limit are studied. Our proofs are based on a careful analysis of a hypoelliptic operator which is the generator of an auxiliary Markov process. Systematic use of the recently developed theory of hypocoercivity \cite{Vil04HPI} is made.Comment: 27 pages, no figures. Submitted to Nonlinearity

    Generalized Langevin Equation Formulation for Anomalous Polymer Dynamics

    Full text link
    For reproducing the anomalous -- i.e., sub- or super-diffusive -- behavior in some stochastic dynamical systems, the Generalized Langevin Equation (GLE) has gained considerable popularity in recent years. Motivated by the question whether or not a system with anomalous dynamics can have the GLE formulation, here I consider polymer physics, where sub-diffusive behavior is commonplace. I provide an exact derivation of the GLE for phantom Rouse polymers, andby identifying polymeric response to local strains, I argue the case for the GLE formulation for self-avoiding polymers and polymer translocation through a narrow pore in a membrane. The number of instances in polymer physics, where the anomalous dynamics corresponds to the GLE, thus seems to be fairly common.Comment: 8 pages, no figures, minimal changes, to appear in JSTAT as a Lette
    corecore