140 research outputs found

    A Top-Down Account of Linear Canonical Transforms

    Full text link
    We contend that what are called Linear Canonical Transforms (LCTs) should be seen as a part of the theory of unitary irreducible representations of the '2+1' Lorentz group. The integral kernel representation found by Collins, Moshinsky and Quesne, and the radial and hyperbolic LCTs introduced thereafter, belong to the discrete and continuous representation series of the Lorentz group in its parabolic subgroup reduction. The reduction by the elliptic and hyperbolic subgroups can also be considered to yield LCTs that act on functions, discrete or continuous in other Hilbert spaces. We gather the summation and integration kernels reported by Basu and Wolf when studiying all discrete, continuous, and mixed representations of the linear group of 2×22\times 2 real matrices. We add some comments on why all should be considered canonical

    Spectral Analysis of Sampled Signals in the Linear Canonical Transform Domain

    Get PDF
    The spectral analysis of uniform or nonuniform sampling signal is one of the hot topics in digital signal processing community. Theories and applications of uniformly and nonuniformly sampled one-dimensional or two-dimensional signals in the traditional Fourier domain have been well studied. But so far, none of the research papers focusing on the spectral analysis of sampled signals in the linear canonical transform domain have been published. In this paper, we investigate the spectrum of sampled signals in the linear canonical transform domain. Firstly, based on the properties of the spectrum of uniformly sampled signals, the uniform sampling theorem of two dimensional signals has been derived. Secondly, the general spectral representation of periodic nonuniformly sampled one and two dimensional signals has been obtained. Thirdly, detailed analysis of periodic nonuniformly sampled chirp signals in the linear canonical transform domain has been performed

    Sampling and Super-resolution of Sparse Signals Beyond the Fourier Domain

    Full text link
    Recovering a sparse signal from its low-pass projections in the Fourier domain is a problem of broad interest in science and engineering and is commonly referred to as super-resolution. In many cases, however, Fourier domain may not be the natural choice. For example, in holography, low-pass projections of sparse signals are obtained in the Fresnel domain. Similarly, time-varying system identification relies on low-pass projections on the space of linear frequency modulated signals. In this paper, we study the recovery of sparse signals from low-pass projections in the Special Affine Fourier Transform domain (SAFT). The SAFT parametrically generalizes a number of well known unitary transformations that are used in signal processing and optics. In analogy to the Shannon's sampling framework, we specify sampling theorems for recovery of sparse signals considering three specific cases: (1) sampling with arbitrary, bandlimited kernels, (2) sampling with smooth, time-limited kernels and, (3) recovery from Gabor transform measurements linked with the SAFT domain. Our work offers a unifying perspective on the sparse sampling problem which is compatible with the Fourier, Fresnel and Fractional Fourier domain based results. In deriving our results, we introduce the SAFT series (analogous to the Fourier series) and the short time SAFT, and study convolution theorems that establish a convolution--multiplication property in the SAFT domain.Comment: 42 pages, 3 figures, manuscript under revie
    corecore