4,693 research outputs found

    Algorithms in algebraic number theory

    Get PDF
    In this paper we discuss the basic problems of algorithmic algebraic number theory. The emphasis is on aspects that are of interest from a purely mathematical point of view, and practical issues are largely disregarded. We describe what has been done and, more importantly, what remains to be done in the area. We hope to show that the study of algorithms not only increases our understanding of algebraic number fields but also stimulates our curiosity about them. The discussion is concentrated of three topics: the determination of Galois groups, the determination of the ring of integers of an algebraic number field, and the computation of the group of units and the class group of that ring of integers.Comment: 34 page

    Landauer's principle as a special case of Galois connection

    Full text link
    It is demonstrated how to construct a Galois connection between two related systems with entropy. The construction, called the Landauer's connection, describes coupling between two systems with entropy. It is straightforward and transfers changes in one system to the other one preserving ordering structure induced by entropy. The Landauer's connection simplifies the description of the classical Landauer's principle for computational systems. Categorification and generalization of the Landauer's principle opens area of modelling of various systems in presence of entropy in abstract terms.Comment: 24 pages, 3 figure

    Revisiting LFSMs

    Full text link
    Linear Finite State Machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is Linear Feedback Shift Registers (LFSRs) used in many cryptographic applications such as design of stream ciphers or pseudo-random generation. LFSRs could be seen as particular LFSMs without inputs. In this paper, we first recall the description of LFSMs using traditional matrices representation. Then, we introduce a new matrices representation with polynomial fractional coefficients. This new representation leads to sparse representations and implementations. As direct applications, we focus our work on the Windmill LFSRs case, used for example in the E0 stream cipher and on other general applications that use this new representation. In a second part, a new design criterion called diffusion delay for LFSRs is introduced and well compared with existing related notions. This criterion represents the diffusion capacity of an LFSR. Thus, using the matrices representation, we present a new algorithm to randomly pick LFSRs with good properties (including the new one) and sparse descriptions dedicated to hardware and software designs. We present some examples of LFSRs generated using our algorithm to show the relevance of our approach.Comment: Submitted to IEEE-I

    A special point problem of Andr\'e-Pink-Zannier in the universal family of abelian varieties

    Full text link
    The Andr\'e-Pink-Zannier conjecture concerns the intersection of subvarieties and the generalized Hecke orbit of a given point in mixed Shimura varieties. It is part of the Zilber-Pink conjecture. In this paper we focus on the universal family of principally polarized abelian varieties. We explain the moduli interpretation of the conjecture in this case and prove several different cases for this conjecture: its overlap with the Andr\'e-Oort conjecture; when the subvariety is contained in an abelian scheme over a curve and the point is a torsion point on its fiber; when the subvariety is a curve.Comment: Removed the algebraic point assumption. Comments are welcome
    • …
    corecore