436 research outputs found

    Discrete Symmetry and Stability in Hamiltonian Dynamics

    Full text link
    In this tutorial we address the existence and stability of periodic and quasiperiodic orbits in N degree of freedom Hamiltonian systems and their connection with discrete symmetries. Of primary importance in our study are the nonlinear normal modes (NNMs), i.e periodic solutions which represent continuations of the system's linear normal modes in the nonlinear regime. We examine the existence of such solutions and discuss different methods for constructing them and studying their stability under fixed and periodic boundary conditions. In the periodic case, we employ group theoretical concepts to identify a special type of NNMs called one-dimensional "bushes". We describe how to use linear combinations such NNMs to construct s(>1)-dimensional bushes of quasiperiodic orbits, for a wide variety of Hamiltonian systems and exploit the symmetries of the linearized equations to simplify the study of their destabilization. Applying this theory to the Fermi Pasta Ulam (FPU) chain, we review a number of interesting results, which have appeared in the recent literature. We then turn to an analytical and numerical construction of quasiperiodic orbits, which does not depend on the symmetries or boundary conditions. We demonstrate that the well-known "paradox" of FPU recurrences may be explained in terms of the exponential localization of the energies Eq of NNM's excited at the low part of the frequency spectrum, i.e. q=1,2,3,.... Thus, we show that the stability of these low-dimensional manifolds called q-tori is related to the persistence or FPU recurrences at low energies. Finally, we discuss a novel approach to the stability of orbits of conservative systems, the GALIk, k=2,...,2N, by means of which one can determine accurately and efficiently the destabilization of q-tori, leading to the breakdown of recurrences and the equipartition of energy, at high values of the total energy E.Comment: 50 pages, 13 figure

    Almost Prime Coordinates for Anisotropic and Thin Pythagorean Orbits

    Full text link
    We make an observation which doubles the exponent of distribution in certain Affine Sieve problems, such as those considered by Liu-Sarnak, Kontorovich, and Kontorovich-Oh. As a consequence, we decrease the known bounds on the saturation numbers in these problems.Comment: 24 page

    Bounds on the exponent of primitivity which depend on the spectrum and the minimal polynomial

    Get PDF
    AbstractSuppose A is an n × n nonnegative primitive matrix whose minimal polynomial has degree m. We conjecture that the well-known bound on the exponent of primitivity (n − 1)2 + 1, due to Wielandt, can be replaced by (m − 1)2 + 1. The only case for which we cannot prove the conjecture is when m ⩾ 5, the number of distinct eigenvalues of A is m − 1 or m, and the directed graph of A has no circuits of length shorter than m − 1, but at least one of its vertices lies on a circuit of length not shorter than m. We show that m(m − 1) is always a bound on the exponent, this being an improvement on Wielandt's bound when m < n. For the case in which A is also symmetric, the bound which we obtain is 2(m − 1). To obtain our results we prove a lemma which shows that for a (general) nonnegative matrix, the number of its distinct eigenvalues is an upper bound on the length of the shortest circuit in its directed graph

    The cyclic sieving phenomenon: a survey

    Full text link
    The cyclic sieving phenomenon was defined by Reiner, Stanton, and White in a 2004 paper. Let X be a finite set, C be a finite cyclic group acting on X, and f(q) be a polynomial in q with nonnegative integer coefficients. Then the triple (X,C,f(q)) exhibits the cyclic sieving phenomenon if, for all g in C, we have # X^g = f(w) where # denotes cardinality, X^g is the fixed point set of g, and w is a root of unity chosen to have the same order as g. It might seem improbable that substituting a root of unity into a polynomial with integer coefficients would have an enumerative meaning. But many instances of the cyclic sieving phenomenon have now been found. Furthermore, the proofs that this phenomenon hold often involve interesting and sometimes deep results from representation theory. We will survey the current literature on cyclic sieving, providing the necessary background about representations, Coxeter groups, and other algebraic aspects as needed.Comment: 48 pages, 3 figures, the sedcond version contains numerous changes suggested by colleagues and the referee. To appear in the London Mathematical Society Lecture Note Series. The third version has a few smaller change

    A Novel Provably Secure Key Agreement Protocol Based On Binary Matrices

    Full text link
    In this paper, a new key agreement protocol is presented. The protocol uses exponentiation of matrices over GF(2) to establish the key agreement. Security analysis of the protocol shows that the shared secret key is indistinguishable from the random under Decisional Diffie-Hellman (DDH) assumption for subgroup of matrices over GF(2) with prime order, and furthermore, the analysis shows that, unlike many other exponentiation based protocols, security of the protocol goes beyond the level of security provided by (DDH) assumption and intractability of Discrete Logarithm Problem (DLP). Actually, security of the protocol completely transcends the reliance on the DLP in the sense that breaking the DLP does not mean breaking the protocol. Complexity of brute force attack on the protocol is equivalent to exhaustive search for the secret key

    The Jones polynomial: quantum algorithms and applications in quantum complexity theory

    Full text link
    We analyze relationships between quantum computation and a family of generalizations of the Jones polynomial. Extending recent work by Aharonov et al., we give efficient quantum circuits for implementing the unitary Jones-Wenzl representations of the braid group. We use these to provide new quantum algorithms for approximately evaluating a family of specializations of the HOMFLYPT two-variable polynomial of trace closures of braids. We also give algorithms for approximating the Jones polynomial of a general class of closures of braids at roots of unity. Next we provide a self-contained proof of a result of Freedman et al. that any quantum computation can be replaced by an additive approximation of the Jones polynomial, evaluated at almost any primitive root of unity. Our proof encodes two-qubit unitaries into the rectangular representation of the eight-strand braid group. We then give QCMA-complete and PSPACE-complete problems which are based on braids. We conclude with direct proofs that evaluating the Jones polynomial of the plat closure at most primitive roots of unity is a #P-hard problem, while learning its most significant bit is PP-hard, circumventing the usual route through the Tutte polynomial and graph coloring.Comment: 34 pages. Substantial revision. Increased emphasis on HOMFLYPT, greatly simplified arguments and improved organizatio
    • …
    corecore