927 research outputs found

    A New Incremental Decision Tree Learning for Cyber Security based on ILDA and Mahalanobis Distance

    Get PDF
    A cyber-attack detection is currently essential for computer network protection. The fundamentals of protection are to detect cyber-attack effectively with the ability to combat it in various ways and with constant data learning such as internet traffic. With these functions, each cyber-attack can be memorized and protected effectively any time. This research will present procedures for a cyber-attack detection system Incremental Decision Tree Learning (IDTL) that use the principle through Incremental Linear Discriminant Analysis (ILDA) together with Mahalanobis distance for classification of the hierarchical tree by reducing data features that enhance classification of a variety of malicious data. The proposed model can learn a new incoming datum without involving the previous learned data and discard this datum after being learned. The results of the experiments revealed that the proposed method can improve classification accuracy as compare with other methods. They showed the highest accuracy when compared to other methods. If comparing with the effectiveness of each class, it was found that the proposed method can classify both intrusion datasets and other datasets efficiently

    Cyber-Physical Security with RF Fingerprint Classification through Distance Measure Extensions of Generalized Relevance Learning Vector Quantization

    Get PDF
    Radio frequency (RF) fingerprinting extracts fingerprint features from RF signals to protect against masquerade attacks by enabling reliable authentication of communication devices at the “serial number” level. Facilitating the reliable authentication of communication devices are machine learning (ML) algorithms which find meaningful statistical differences between measured data. The Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier is one ML algorithm which has shown efficacy for RF fingerprinting device discrimination. GRLVQI extends the Learning Vector Quantization (LVQ) family of “winner take all” classifiers that develop prototype vectors (PVs) which represent data. In LVQ algorithms, distances are computed between exemplars and PVs, and PVs are iteratively moved to accurately represent the data. GRLVQI extends LVQ with a sigmoidal cost function, relevance learning, and PV update logic improvements. However, both LVQ and GRLVQI are limited due to a reliance on squared Euclidean distance measures and a seemingly complex algorithm structure if changes are made to the underlying distance measure. Herein, the authors (1) develop GRLVQI-D (distance), an extension of GRLVQI to consider alternative distance measures and (2) present the Cosine GRLVQI classifier using this framework. To evaluate this framework, the authors consider experimentally collected Z -wave RF signals and develop RF fingerprints to identify devices. Z -wave devices are low-cost, low-power communication technologies seen increasingly in critical infrastructure. Both classification and verification, claimed identity, and performance comparisons are made with the new Cosine GRLVQI algorithm. The results show more robust performance when using the Cosine GRLVQI algorithm when compared with four algorithms in the literature. Additionally, the methodology used to create Cosine GRLVQI is generalizable to alternative measures

    An Optimization Framework for Generalized Relevance Learning Vector Quantization with Application to Z-Wave Device Fingerprinting

    Get PDF
    Z-Wave is low-power, low-cost Wireless Personal Area Network (WPAN) technology supporting Critical Infrastructure (CI) systems that are interconnected by government-to-internet pathways. Given that Z-wave is a relatively unsecure technology, Radio Frequency Distinct Native Attribute (RF-DNA) Fingerprinting is considered here to augment security by exploiting statistical features from selected signal responses. Related RF-DNA efforts include use of Multiple Discriminant Analysis (MDA) and Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifiers, with GRLVQI outperforming MDA using empirically determined parameters. GRLVQI is optimized here for Z-Wave using a full factorial experiment with spreadsheet search and response surface methods. Two optimization measures are developed for assessing Z-Wave discrimination: 1) Relative Accuracy Percentage (RAP) for device classification, and 2) Mean Area Under the Curve (AUCM) for device identity (ID) verification. Primary benefits of the approach include: 1) generalizability to other wireless device technologies, and 2) improvement in GRLVQI device classification and device ID verification performance

    A Critical Study on the Effect of Dimensionality Reduction on Intrusion Detection in Water Storage Critical Infrastructure

    Get PDF
    Supervisory control and data acquisition (SCADA) systems are often imperiled bycyber-attacks, which can often be detected using intrusion detection system (IDSs).However, the performance and efficiency of IDSs can be affected by several factors,including the quality of data, curse of dimensionality of the data, and computationalcost. Feature reduction techniques can overcome most of these challenges by eliminatingthe redundant and non-informative features, thereby increasing the detectionaccuracy. This study aims to shows the importance of feature reduction on the intrusiondetection performance. To do this, a multi-modular IDS is designed that isconnected to the SCADA system of a water storage tank. A comparative study isalso performed by employing advanced feature selection and dimensionality reductiontechniques. The utilized feature reduction techniques improves the IDS efficiency byreducing the memory usage and using data with better quality, which in turn increasethe detection accuracy. The obtained results have been analyzed in terms of F1-scoreand accuracy

    Network intrusion detection based on LDA for payload feature selection

    Full text link
    Anomaly Intrusion Detection System (IDS) is a statistical based network IDS which can detect attack variants and novel attacks without a priori knowledge. Current anomaly IDSs are inefficient for real-time detection because of their complex computation. This paper proposes a novel approach to reduce the heavy computational cost of an anomaly IDS. Linear Discriminant Analysis (LDA) and difference distance map are used for selection of significant features. This approach is able to transform high-dimensional feature vectors into a low-dimensional domain. The similarity between new incoming packets and a normal profile is determined using Euclidean distance on the simple, low-dimensional feature domain. The final decision will be made according to a pre-calculated threshold to differentiate normal and abnormal network packets. The proposed approach is evaluated using DARPA 1999 IDS dataset. ©2010 IEEE

    Multi-Source Data Fusion for Cyberattack Detection in Power Systems

    Full text link
    Cyberattacks can cause a severe impact on power systems unless detected early. However, accurate and timely detection in critical infrastructure systems presents challenges, e.g., due to zero-day vulnerability exploitations and the cyber-physical nature of the system coupled with the need for high reliability and resilience of the physical system. Conventional rule-based and anomaly-based intrusion detection system (IDS) tools are insufficient for detecting zero-day cyber intrusions in the industrial control system (ICS) networks. Hence, in this work, we show that fusing information from multiple data sources can help identify cyber-induced incidents and reduce false positives. Specifically, we present how to recognize and address the barriers that can prevent the accurate use of multiple data sources for fusion-based detection. We perform multi-source data fusion for training IDS in a cyber-physical power system testbed where we collect cyber and physical side data from multiple sensors emulating real-world data sources that would be found in a utility and synthesizes these into features for algorithms to detect intrusions. Results are presented using the proposed data fusion application to infer False Data and Command injection-based Man-in- The-Middle (MiTM) attacks. Post collection, the data fusion application uses time-synchronized merge and extracts features followed by pre-processing such as imputation and encoding before training supervised, semi-supervised, and unsupervised learning models to evaluate the performance of the IDS. A major finding is the improvement of detection accuracy by fusion of features from cyber, security, and physical domains. Additionally, we observed the co-training technique performs at par with supervised learning methods when fed with our features

    Tuning Hyperparameters for DNA-based Discrimination of Wireless Devices

    Get PDF
    The Internet of Things (IoT) and Industrial IoT (IIoT) is enabled by Wireless Personal Area Network (WPAN) devices. However, these devices increase vulnerability concerns of the IIoT and resultant Critical Infrastructure (CI) risks. Secure IIoT is enabled by both pre-attack security and post-attack forensic analysis. Radio Frequency (RF) Fingerprinting enables both pre- and post-attack security by providing serial-number level identification of devices through fingerprint characterization of their emissions. For classification and verification, research has shown high performance by employing the neural network-based Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier. However, GRLVQI has numerous hyperparameters and tuning requires AI expertise, thus some researchers have abandoned GRLVQI for notionally simpler, but less accurate, methods. Herein, we develop a fool-proof approach for tuning AI algorithms. For demonstration, Z-Wave, an insecure low-power/cost WPAN technology, and the GRLVQI classifier are considered. Results show significant increases in accuracy (5% for classification, 50% verification) over baseline methods

    Performance of Machine Learning and Big Data Analytics paradigms in Cybersecurity and Cloud Computing Platforms

    Get PDF
    The purpose of the research is to evaluate Machine Learning and Big Data Analytics paradigms for use in Cybersecurity. Cybersecurity refers to a combination of technologies, processes and operations that are framed to protect information systems, computers, devices, programs, data and networks from internal or external threats, harm, damage, attacks or unauthorized access. The main characteristic of Machine Learning (ML) is the automatic data analysis of large data sets and production of models for the general relationships found among data. ML algorithms, as part of Artificial Intelligence, can be clustered into supervised, unsupervised, semi-supervised, and reinforcement learning algorithms
    corecore