3,029 research outputs found

    Generalized Degrees of Freedom of the Interference Channel with a Signal Cognitive Relay

    Full text link
    We study the interference channel with a signal cognitive relay. A signal cognitive relay knows the transmit signals (but not the messages) of the sources non-causally, and tries to help them communicating with their respective destinations. We derive upper bounds and provide achievable schemes for this channel. These upper and lower bounds are shown to be tight from generalized degrees of freedom point of view. As a result, a characterization of the generalized degrees of freedom of the interference channel with a signal cognitive relay is given.Comment: Results submitted to ISIT 2010, 19 pages, 3 figure

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Approximate Sum-Capacity of K-user Cognitive Interference Channels with Cumulative Message Sharing

    Full text link
    This paper considers the K user cognitive interference channel with one primary and K-1 secondary/cognitive transmitters with a cumulative message sharing structure, i.e cognitive transmitter i∈[2:K]i\in [2:K] knows non-causally all messages of the users with index less than i. We propose a computable outer bound valid for any memoryless channel. We first evaluate the sum-rate outer bound for the high- SNR linear deterministic approximation of the Gaussian noise channel. This is shown to be capacity for the 3-user channel with arbitrary channel gains and the sum-capacity for the symmetric K-user channel. Interestingly. for the K user channel having only the K th cognitive know all the other messages is sufficient to achieve capacity i.e cognition at transmitter 2 to K-1 is not needed. Next the sum capacity of the symmetric Gaussian noise channel is characterized to within a constant additive and multiplicative gap. The proposed achievable scheme for the additive gap is based on Dirty paper coding and can be thought of as a MIMO-broadcast scheme where only one encoding order is possible due to the message sharing structure. As opposed to other multiuser interference channel models, a single scheme suffices for both the weak and strong interference regimes. With this scheme the generalized degrees of freedom (gDOF) is shown to be a function of K, in contrast to the non cognitive case and the broadcast channel case. Interestingly, it is show that as the number of users grows to infinity the gDoF of the K-user cognitive interference channel with cumulative message sharing tends to the gDoF of a broadcast channel with a K-antenna transmitter and K single-antenna receivers. The analytical additive additive and multiplicative gaps are a function of the number of users. Numerical evaluations of inner and outer bounds show that the actual gap is less than the analytical one.Comment: Journa

    A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks

    Full text link
    The degrees of freedom (DoF) of an X-network with M transmit and N receive nodes utilizing interference alignment with the support of JJ relays each equipped with LjL_j antennas operating in a half-duplex non-regenerative mode is investigated. Conditions on the feasibility of interference alignment are derived using a proper transmit strategy and a structured approach based on a Kronecker-product representation. The advantages of this approach are twofold: First, it extends existing results on the achievable DoF to generalized antenna configurations. Second, it unifies the analysis for time-varying and constant channels and provides valuable insights and interconnections between the two channel models. It turns out that a DoF of \nicefrac{NM}{M+N-1} is feasible whenever the sum of the Lj2β‰₯[Nβˆ’1][Mβˆ’1]L_j^2 \geq [N-1][M-1]

    The Generalized Degrees of Freedom of the Interference Relay Channel with Strong Interference

    Full text link
    The interference relay channel (IRC) under strong interference is considered. A high-signal-to-noise ratio (SNR) generalized degrees of freedom (GDoF) characterization of the capacity is obtained. To this end, a new GDoF upper bound is derived based on a genie-aided approach. The achievability of the GDoF is based on cooperative interference neutralization. It turns out that the relay increases the GDoF even if the relay-destination link is weak. Moreover, in contrast to the standard interference channel, the GDoF is not a monotonically increasing function of the interference strength in the strong interference regime.Comment: 8 pages, 4 figures, Allerton 201
    • …
    corecore