28,331 research outputs found

    Profile control charts based on nonparametric LL-1 regression methods

    Full text link
    Classical statistical process control often relies on univariate characteristics. In many contemporary applications, however, the quality of products must be characterized by some functional relation between a response variable and its explanatory variables. Monitoring such functional profiles has been a rapidly growing field due to increasing demands. This paper develops a novel nonparametric LL-1 location-scale model to screen the shapes of profiles. The model is built on three basic elements: location shifts, local shape distortions, and overall shape deviations, which are quantified by three individual metrics. The proposed approach is applied to the previously analyzed vertical density profile data, leading to some interesting insights.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS501 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Helicopter rotor wake geometry and its influence in forward flight. Volume 1: Generalized wake geometry and wake effect on rotor airloads and performance

    Get PDF
    An analytic investigation to generalize wake geometry of a helicopter rotor in steady level forward flight and to demonstrate the influence of wake deformation in the prediction of rotor airloads and performance is described. Volume 1 presents a first level generalized wake model based on theoretically predicted tip vortex geometries for a selected representative blade design. The tip vortex distortions are generalized in equation form as displacements from the classical undistorted tip vortex geometry in terms of vortex age, blade azimuth, rotor advance ratio, thrust coefficient, and number of blades. These equations were programmed to provide distorted wake coordinates at very low cost for use in rotor airflow and airloads prediction analyses. The sensitivity of predicted rotor airloads, performance, and blade bending moments to the modeling of the tip vortex distortion are demonstrated for low to moderately high advance ratios for a representative rotor and the H-34 rotor. Comparisons with H-34 rotor test data demonstrate the effects of the classical, predicted distorted, and the newly developed generalized wake models on airloads and blade bending moments. Use of distorted wake models results in the occurrence of numerous blade-vortex interactions on the forward and lateral sides of the rotor disk. The significance of these interactions is related to the number and degree of proximity to the blades of the tip vortices. The correlation obtained with the distorted wake models (generalized and predicted) is encouraging

    Poisson regression charts for the monitoring of surveillance time series

    Get PDF
    This paper presents a Poisson control chart for monitoring time series of counts typically arising in the surveillance of infectious diseases. The in-control mean is assumed to be time-varying and linear on the log-scale with intercept and seasonal components. If a shift in the intercept occurs the system goes out-of-control. Novel is that the magnitude of the shift does not have to be specified in advance: using the generalized likelihood ratio (GLR) statistic a monitoring scheme is formulated to detect on-line whether a shift in the intercept occurred. For this specific Poisson chart the necessary quantities of the GLR detector can be efficiently computed by recursive formulas. Extensions to more general Poisson charts e.g. containing an autoregressive epidemic component are discussed. Using Monte Carlo simulations run length properties of the proposed schemes are investigated. The practicability of the charts is demonstrated by applying them to the observed number of salmonella hadar cases in Germany 2001-2006
    corecore